$\bf命题1:$设$\left\{ {{a_n}} \right\}$为单调增加的数列,则$\lim \limits_{n \to \infty } {a_n} = \mathop {Sup}\limits_{k \ge 1} \left\{ {{a_k}} \right\}$
证明:记M = \mathop {Sup}\limits_{k \ge 1} \left\{ {{a_k}} \right\}
$\left( 2 \right)$当$M = + \infty $时,由上确界的定义知,对任给$\varepsilon >
0$,存在${a_N}$,使得
{a_N} > \varepsilon
原文:http://www.cnblogs.com/ly758241/p/3706259.html