首页 > 其他 > 详细

49886

时间:2014-05-04 20:17:30      阅读:666      评论:0      收藏:0      [点我收藏+]

$\bf命题:$设实二次型

f(xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣)=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣(abubuko.com,布布扣i1bubuko.com,布布扣xbubuko.com,布布扣1bubuko.com,布布扣+?+abubuko.com,布布扣inbubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣

证明二次型的秩等于$A = {\left( {{a_{ij}}} \right)_{n \times n}}$的秩

证明:我们容易知道

f(xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣)=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣x=xbubuko.com,布布扣bubuko.com,布布扣(bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)xbubuko.com,布布扣

其中${{\alpha _i} = {{\left( {{a_{i1}}, \cdots ,{a_{in}}} \right)}^\prime }}$,$x = {\left( {{x_1}, \cdots ,{x_n}} \right)^\prime }$,从而$f$的矩阵为
bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣αbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=(αbubuko.com,布布扣1bubuko.com,布布扣,?,αbubuko.com,布布扣nbubuko.com,布布扣)?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣αbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣αbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣=Abubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣

而$r\left( {A‘A} \right) = r\left( A \right)$,故即证

49886,布布扣,bubuko.com

49886

原文:http://www.cnblogs.com/ly758241/p/3706424.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!