$\bf命题:$设实二次型
f(x
1
,?,x
n
)=∑
i=1
n
(a
i1
x
1
+?+a
in
x
n
)
2

证明二次型的秩等于$A = {\left( {{a_{ij}}} \right)_{n \times n}}$的秩
证明:我们容易知道
f(x
1
,?,x
n
)=∑
i=1
n
x
′
α
i
α
i
′
x=x
′
(∑
i=1
n
α
i
α
i
′
)x
其中${{\alpha _i} = {{\left( {{a_{i1}}, \cdots ,{a_{in}}} \right)}^\prime
}}$,$x = {\left( {{x_1}, \cdots ,{x_n}} \right)^\prime }$,从而$f$的矩阵为
∑
i=1
n
α
i
α
i
′
=(α
1
,?,α
n
)?
?
?
α
1
′
?
α
n
′

?
?
?
=A
′
A
而$r\left( {A‘A} \right) = r\left( A \right)$,故即证49886,布布扣,bubuko.com
49886
原文:http://www.cnblogs.com/ly758241/p/3706424.html