首页 > 其他 > 详细

5656

时间:2014-05-04 20:16:02      阅读:784      评论:0      收藏:0      [点我收藏+]

$\bf命题1:$设$f(x)$是$\left[ {1, + \infty } \right)$上的非负单调减少函数,令

abubuko.com,布布扣nbubuko.com,布布扣=bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣f(k)?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dx,nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

证明:数列$\left\{ {{a_n}} \right\}$收敛

证明:由$f(x)$在$\left[ {1, + \infty } \right)$上单调减少知,$f(x)$在$\left[ {n,n + 1} \right]$上可积,且

f(n+1)bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dxf(n),nNbubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣

从而可知

abubuko.com,布布扣n+1bubuko.com,布布扣?abubuko.com,布布扣nbubuko.com,布布扣=f(n+1)?bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dx0bubuko.com,布布扣

即$\left\{ {{a_n}} \right\}$单调减少;而又由$\eqref {eq1}$知

abubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣f(k)?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dxbubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣k+1bubuko.com,布布扣kbubuko.com,布布扣f(x)dx?bubuko.com,布布扣nbubuko.com,布布扣1bubuko.com,布布扣f(x)dxbubuko.com,布布扣=bubuko.com,布布扣n+1bubuko.com,布布扣nbubuko.com,布布扣f(x)dxf(n+1)0 bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

即$\left\{ {{a_n}} \right\}$有上界,故由$\eqref {eq2}$,$\eqref {eq3}$及单调有界原理知数列$\left\{ {{a_n}} \right\}$收敛

5656,布布扣,bubuko.com

5656

原文:http://www.cnblogs.com/ly758241/p/3706437.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!