$\bf命题1:$设$f(x)$是$\left[ {1, + \infty } \right)$上的非负单调减少函数,令
a
n
=∑
k=1
n
f(k)?∫
n
1
f(x)dx,n∈N
+

证明:数列$\left\{ {{a_n}} \right\}$收敛
证明:由$f(x)$在$\left[ {1, + \infty } \right)$上单调减少知,$f(x)$在$\left[ {n,n + 1}
\right]$上可积,且
f(n+1)≤∫
n+1
n
f(x)dx≤f(n),n∈N
+

从而可知
a
n+1
?a
n
=f(n+1)?∫
n+1
n
f(x)dx≤0
即$\left\{ {{a_n}} \right\}$单调减少;而又由$\eqref {eq1}$知
a
n



=∑
k=1
n
f(k)?∫
n
1
f(x)dx
≥∑
k=1
n
∫
k+1
k
f(x)dx?∫
n
1
f(x)dx
=∫
n+1
n
f(x)dx≥f(n+1)≥0 


即$\left\{ {{a_n}} \right\}$有上界,故由$\eqref {eq2}$,$\eqref
{eq3}$及单调有界原理知数列$\left\{ {{a_n}} \right\}$收敛5656,布布扣,bubuko.com
5656
原文:http://www.cnblogs.com/ly758241/p/3706437.html