首页 > 其他 > 详细

9625

时间:2014-05-04 20:11:11      阅读:548      评论:0      收藏:0      [点我收藏+]

$\bf命题2:$设$A$,$B$均为实对称半正定阵,则$A$,$B$可同时合同对角化

证明:由$A,B$半正定知$A+B$半正定,则存在可逆阵$P$,使得

Pbubuko.com,布布扣Tbubuko.com,布布扣(A+B)P=diag(Ebubuko.com,布布扣rbubuko.com,布布扣,0)bubuko.com,布布扣

Pbubuko.com,布布扣Tbubuko.com,布布扣AP=(Abubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣

Pbubuko.com,布布扣Tbubuko.com,布布扣BP=(Ebubuko.com,布布扣rbubuko.com,布布扣?Abubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣?Abubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?Abubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?Abubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣

由于${ - {A_3}}$半正定且${ {A_3}}$半正定,故${{A_3} = 0}$,从而可知${{A_2} = 0}$

又由${{A_1}}$半正定知,存在正交阵$Q$,使得

Qbubuko.com,布布扣Tbubuko.com,布布扣Abubuko.com,布布扣1bubuko.com,布布扣Q=diag(λbubuko.com,布布扣1bubuko.com,布布扣,?,λbubuko.com,布布扣rbubuko.com,布布扣)=Cbubuko.com,布布扣

从而可知
diag(Qbubuko.com,布布扣Tbubuko.com,布布扣,Ebubuko.com,布布扣n?rbubuko.com,布布扣)Pbubuko.com,布布扣Tbubuko.com,布布扣APdiag(Q,Ebubuko.com,布布扣n?rbubuko.com,布布扣)=diag(C,0)bubuko.com,布布扣

diag(Qbubuko.com,布布扣Tbubuko.com,布布扣,Ebubuko.com,布布扣n?rbubuko.com,布布扣)Pbubuko.com,布布扣Tbubuko.com,布布扣BPdiag(Q,Ebubuko.com,布布扣n?rbubuko.com,布布扣)=diag(Ebubuko.com,布布扣rbubuko.com,布布扣?C,0)bubuko.com,布布扣

令$R = Pdiag\left( {Q,{E_{n - r}}} \right)$,则结论成立

$\bf注1:$

9625,布布扣,bubuko.com

9625

原文:http://www.cnblogs.com/ly758241/p/3706407.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!