$\bf命题1:$设$A,B$实对称且$A$正定,则$AB$相似于对角阵
方法一:由$A$正定知,存在正定阵$C$,使得$A = {C^2}$,于是
\[AB = {C^2}B = C\left( {CBC}
\right){C^{ - 1}}\]
由$C$实对称知$CBC$实对称,则存在正交阵$Q$,使得
\[{Q^{ - 1}}\left( {CBC}
\right)Q = diag\left( {{\lambda _1}, \cdots {\lambda _n}}
\right)\]
从而可知结论成立
原文:http://www.cnblogs.com/ly758241/p/3706338.html