首页 > 其他 > 详细

8

时间:2014-05-04 19:32:56      阅读:402      评论:0      收藏:0      [点我收藏+]

$\bf命题:$设$A \in {M_{m \times n}}\left( F \right),B \in {M_{n \times m}}\left( F \right),m \ge n,\lambda \ne 0$,则

\[{\rm{ }}\left| {\lambda {E_m} - AB} \right| = {\lambda ^{m - n}}\left| {\lambda {E_n} - BA} \right|\]
方法一:初等变换法
\[\left( {\begin{array}{*{20}{c}}
{\lambda {E_m}}&A\\
B&{{E_n}}
\end{array}} \right) \to \left( {\begin{array}{*{20}{c}}
{\lambda {E_m} - AB}&0\\
B&{{E_n}}
\end{array}} \right) \to \left( {\begin{array}{*{20}{c}}
{\lambda {E_m} - AB}&0\\
0&{{E_n}}
\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}
{\lambda {E_m}}&A\\
B&{{E_n}}
\end{array}} \right) \to \left( {\begin{array}{*{20}{c}}
{\lambda {E_m}}&A\\
0&{\frac{1}{\lambda }\left( {\lambda {E_n} - BA} \right)}
\end{array}} \right) \to \left( {\begin{array}{*{20}{c}}
{\lambda {E_m}}&0\\
0&{\frac{1}{\lambda }\left( {\lambda {E_n} - BA} \right)}
\end{array}} \right)\]

8,布布扣,bubuko.com

8

原文:http://www.cnblogs.com/ly758241/p/3706320.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!