首页 > 其他 > 详细

26566

时间:2014-05-04 19:12:05      阅读:395      评论:0      收藏:0      [点我收藏+]

$\bf命题1:$设$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,令

fbubuko.com,布布扣nbubuko.com,布布扣(x)=n[f(x+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?f(x)]bubuko.com,布布扣

证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$f‘\left( x \right)$

证明:由$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$知,$f‘\left( x \right) \in C\left[ {a,b}
\right]$,则

由$\bf{Cantor定理}$知,$f‘\left( x \right)$在$\left[ {a,b} \right]$上一致连续,即对任意$\varepsilon > 0$,存在$\delta > 0$,使得对任意的$x,y \in \left[ {a,b} \right]$满足$\left| {x - y} \right| < \delta $时,有

bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣(x)?fbubuko.com,布布扣bubuko.com,布布扣(y)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣

由微分中值定理知,存在${\xi _n} \in \left( {x,x + \frac{1}{n}} \right)$,使得

fbubuko.com,布布扣nbubuko.com,布布扣(x)=nfbubuko.com,布布扣bubuko.com,布布扣(ξbubuko.com,布布扣nbubuko.com,布布扣)1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=fbubuko.com,布布扣bubuko.com,布布扣(ξbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣

取$N = \frac{1}{\delta }$,则当$n > N$时,对任意$x \in \left[ {a,b} \right]$,有
|x?ξbubuko.com,布布扣nbubuko.com,布布扣|<δbubuko.com,布布扣

从而有

bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣(x)?fbubuko.com,布布扣bubuko.com,布布扣(ξbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣

所以对任意$\varepsilon > 0$,存在$N = \frac{1}{\delta } > 0$,使得当$n > N$时,对任意$x \in \left[ {a,b} \right]$,有
bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣(x)?fbubuko.com,布布扣nbubuko.com,布布扣(x)bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣(x)?fbubuko.com,布布扣bubuko.com,布布扣(ξbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣

从而由函数列一致收敛的定义即证

$\bf注1:$$N$的取值由不等式${\left| {x - {\xi _n}} \right| < \delta }$放缩得到

$\bf注2:$由于$f‘\left( x \right) \in C\left( { - \infty , + \infty } \right)$,所以

limbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣nbubuko.com,布布扣(x)=limbubuko.com,布布扣nbubuko.com,布布扣f(x+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?f(x)bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣

即${f_n}\left( x \right)$在$\left( { - \infty , + \infty } \right)$上处处收敛于$f‘\left( x \right)$

26566,布布扣,bubuko.com

26566

原文:http://www.cnblogs.com/ly758241/p/3706461.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!