Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?
3 0.3 0.7 0.1 0.3 0.6 0
3.41
解题思路:
比如打靶打中8环的概率为0.3 ,打中7环的概率为0.7,那么打中环数的期望就是 8*0.3 + 7*0.7
本题中对于左边没有屋子的只能向左下和右下走,概率为a,b,对于左边,左下,右下都有屋子的,三种方向都可以走,概率为 e,c,d,对于没有左下,没有右下只能向左走的概率为1.问从顶部到左下角期望走的步数。
就是求数学期望,但预先不知道离散的走的步数。所以需要用到期望的离散性质。
本题中我们用dp[i][j] 表示当前位置距离目的地还需要走的期望步数。那么目的地假设为dp[n][1] (根据建的坐标不一样,位置也不一样),那么dp[n][1]的值为0,因为不需要再走了,那么我们所求的就是dp[1][1] 开始的地方。所以解题的过程,就是一个逆推的过程。
下面,我们用两种视角(来解决本题)
代码:
首先以我们的视角:
#include <iostream> #include <string.h> #include <iomanip> using namespace std; double dp[100][100]; int n; double a,b,c,d,e; int main() { while(cin>>n&&n) { cin>>a>>b>>c>>d>>e; memset(dp,0,sizeof(dp)); dp[n][1]=0; for(int i=2;i<=n;i++) dp[n][i]+=1*(dp[n][i-1]+1);//处理最后一行 for(int i=n-1;i>=1;i--)//从倒数第二行开始处理 { dp[i][1]+=a*(dp[i+1][1]+1)+b*(dp[i+1][2]+1);//处理每一行的第一列 for(int j=2;j<=n;j++) dp[i][j]+=c*(dp[i+1][j]+1)+d*(dp[i+1][j+1]+1)+e*(dp[i][j-1]+1);//处理每一行的除了第一列以外的其它列 } cout<<setiosflags(ios::fixed)<<setprecision(2)<<dp[1][1]<<endl; } return 0; }
以故事中主人公的视角:
#include <iostream> #include <string.h> #include <iomanip> using namespace std; double dp[100][100]; int n; double a,b,c,d,e; int main() { while(cin>>n&&n) { cin>>a>>b>>c>>d>>e; memset(dp,0,sizeof(dp)); dp[n][n]=0;//目的地 for(int i=n-1;i>=1;i--) dp[n][i]+=1*(dp[n][i+1]+1); for(int i=n-1;i>=1;i--)//行数 { dp[i][i]+=a*(dp[i+1][i+1]+1)+b*(dp[i+1][i]+1); for(int j=i-1;j>=1;j--) dp[i][j]+=c*(dp[i+1][j+1]+1)+d*(dp[i+1][j]+1)+e*(dp[i][j+1]+1); } cout<<setiosflags(ios::fixed)<<setprecision(2)<<dp[1][1]<<endl; } return 0; }
[2013山东ACM省赛] The number of steps (概率DP,数学期望),布布扣,bubuko.com
[2013山东ACM省赛] The number of steps (概率DP,数学期望)
原文:http://blog.csdn.net/sr_19930829/article/details/25067207