USE source; ALTER TABLE customer ADD shipping_address VARCHAR(50) AFTER customer_state , ADD shipping_zip_code INT AFTER shipping_address , ADD shipping_city VARCHAR(30) AFTER shipping_zip_code , ADD shipping_state VARCHAR(2) AFTER shipping_city ; ALTER TABLE sales_order ADD order_quantity INT AFTER order_amount ;使用下面的HiveQL脚本修改RDS数据库模式。
USE rds; ALTER TABLE customer ADD COLUMNS (shipping_address VARCHAR(50) COMMENT ‘shipping_address‘ , shipping_zip_code INT COMMENT ‘shipping_zip_code‘ , shipping_city VARCHAR(30) COMMENT ‘shipping_city‘ , shipping_state VARCHAR(2) COMMENT ‘shipping_state‘) ; ALTER TABLE sales_order ADD COLUMNS (order_quantity INT COMMENT ‘order_quantity‘) ;使用下面的HiveQL脚本修改DW数据库模式。
USE dw; -- 修改客户维度表 ALTER TABLE customer_dim RENAME TO customer_dim_old; CREATE TABLE customer_dim ( customer_sk INT comment ‘surrogate key‘, customer_number INT comment ‘number‘, customer_name VARCHAR(50) comment ‘name‘, customer_street_address VARCHAR(50) comment ‘address‘, customer_zip_code INT comment ‘zipcode‘, customer_city VARCHAR(30) comment ‘city‘, customer_state VARCHAR(2) comment ‘state‘, shipping_address VARCHAR(50) COMMENT ‘shipping_address‘, shipping_zip_code INT COMMENT ‘shipping_zip_code‘, shipping_city VARCHAR(30) COMMENT ‘shipping_city‘, shipping_state VARCHAR(2) COMMENT ‘shipping_state‘, version INT comment ‘version‘, effective_date DATE comment ‘effective date‘, expiry_date DATE comment ‘expiry date‘ ) CLUSTERED BY (customer_sk) INTO 8 BUCKETS STORED AS ORC TBLPROPERTIES (‘transactional‘=‘true‘); INSERT INTO customer_dim SELECT customer_sk, customer_number, customer_name, customer_street_address, customer_zip_code, customer_city, customer_state, NULL, NULL, NULL, NULL, version, effective_date, expiry_date FROM customer_dim_old; DROP TABLE customer_dim_old; -- 修改销售订单事实表 ALTER TABLE sales_order_fact RENAME TO sales_order_fact_old; CREATE TABLE sales_order_fact ( order_sk INT comment ‘order surrogate key‘, customer_sk INT comment ‘customer surrogate key‘, product_sk INT comment ‘product surrogate key‘, order_date_sk INT comment ‘date surrogate key‘, order_amount DECIMAL(10 , 2 ) comment ‘order amount‘, order_quantity INT COMMENT ‘order_quantity‘ ) CLUSTERED BY (order_sk) INTO 8 BUCKETS STORED AS ORC TBLPROPERTIES (‘transactional‘=‘true‘); INSERT INTO sales_order_fact SELECT *,NULL FROM sales_order_fact_old; DROP TABLE sales_order_fact_old;上面这段代码中修改DW数据库模式这部分很奇怪:明明可以直接在表上添加列,为何要新建一个表,再把数据装载到新表中去呢?原因是老版本的Hive对ORC格式表的模式修改尤其是增加列的支持有很多问题,只有通过新建表并重新组织数据的方式才能正常执行。看一下面的简单例子就会一目了然。
use test; drop table if exists t1; create table t1(c1 int, c2 string) clustered by (c1) into 8 buckets stored as orc TBLPROPERTIES (‘transactional‘=‘true‘); insert into t1 values (1,‘aaa‘); alter table t1 add columns (c3 string) ; update t1 set c2=‘ccc‘ where c1=1; select * from t1;上面的代码建了一个ORC表,插入一行数据,添加一列,修改数据,最后再查询数据。这些在关系数据库中很普通的操作,最后一步查询居然出错,如下图所示。
last_value=`sqoop job --show myjob_incremental_import --meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop | grep incremental.last.value | awk ‘{print $3}‘` sqoop job --delete myjob_incremental_import --meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop sqoop job --meta-connect jdbc:hsqldb:hsql://cdh2:16000/sqoop --create myjob_incremental_import -- import --connect "jdbc:mysql://cdh1:3306/source?useSSL=false&user=root&password=mypassword" --table sales_order --columns "order_number, customer_number, product_code, order_date, entry_date, order_amount, order_quantity" --hive-import --hive-table rds.sales_order --incremental append --check-column order_number --last-value $last_value其中$last_value是上次ETL执行后,被检查列的最大值。
-- 设置变量以支持事务 set hive.support.concurrency=true; set hive.exec.dynamic.partition.mode=nonstrict; set hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; set hive.compactor.initiator.on=true; set hive.compactor.worker.threads=1; USE dw; -- 设置SCD的生效时间和过期时间 SET hivevar:cur_date = CURRENT_DATE(); SET hivevar:pre_date = DATE_ADD(${hivevar:cur_date},-1); SET hivevar:max_date = CAST(‘2200-01-01‘ AS DATE); -- 设置CDC的上限时间 INSERT OVERWRITE TABLE rds.cdc_time SELECT last_load, ${hivevar:cur_date} FROM rds.cdc_time; -- 装载customer维度 -- 设置已删除记录和地址相关列上SCD2的过期,用<=>运算符处理NULL值。 UPDATE customer_dim SET expiry_date = ${hivevar:pre_date} WHERE customer_dim.customer_sk IN (SELECT a.customer_sk FROM (SELECT customer_sk, customer_number, customer_street_address, customer_zip_code, customer_city, customer_state, shipping_address, shipping_zip_code, shipping_city, shipping_state FROM customer_dim WHERE expiry_date = ${hivevar:max_date}) a LEFT JOIN rds.customer b ON a.customer_number = b.customer_number WHERE b.customer_number IS NULL OR ( !(a.customer_street_address <=> b.customer_street_address) OR !(a.customer_zip_code <=> b.customer_zip_code) OR !(a.customer_city <=> b.customer_city) OR !(a.customer_state <=> b.customer_state) OR !(a.shipping_address <=> b.shipping_address) OR !(a.shipping_zip_code <=> b.shipping_zip_code) OR !(a.shipping_city <=> b.shipping_city) OR !(a.shipping_state <=> b.shipping_state) )); -- 处理customer_street_addresses列上SCD2的新增行 INSERT INTO customer_dim SELECT ROW_NUMBER() OVER (ORDER BY t1.customer_number) + t2.sk_max, t1.customer_number, t1.customer_name, t1.customer_street_address, t1.customer_zip_code, t1.customer_city, t1.customer_state, t1.shipping_address, t1.shipping_zip_code, t1.shipping_city, t1.shipping_state, t1.version, t1.effective_date, t1.expiry_date FROM ( SELECT t2.customer_number customer_number, t2.customer_name customer_name, t2.customer_street_address customer_street_address, t2.customer_zip_code customer_zip_code, t2.customer_city customer_city, t2.customer_state customer_state, t2.shipping_address shipping_address, t2.shipping_zip_code shipping_zip_code, t2.shipping_city shipping_city, t2.shipping_state shipping_state, t1.version + 1 version, ${hivevar:pre_date} effective_date, ${hivevar:max_date} expiry_date FROM customer_dim t1 INNER JOIN rds.customer t2 ON t1.customer_number = t2.customer_number AND t1.expiry_date = ${hivevar:pre_date} LEFT JOIN customer_dim t3 ON t1.customer_number = t3.customer_number AND t3.expiry_date = ${hivevar:max_date} WHERE (!(t1.customer_street_address <=> t2.customer_street_address) OR !(t1.customer_zip_code <=> t2.customer_zip_code) OR !(t1.customer_city <=> t2.customer_city) OR !(t1.customer_state <=> t2.customer_state) OR !(t1.shipping_address <=> t2.shipping_address) OR !(t1.shipping_zip_code <=> t2.shipping_zip_code) OR !(t1.shipping_city <=> t2.shipping_city) OR !(t1.shipping_state <=> t2.shipping_state) ) AND t3.customer_sk IS NULL) t1 CROSS JOIN (SELECT COALESCE(MAX(customer_sk),0) sk_max FROM customer_dim) t2; -- 处理customer_name列上的SCD1 -- 因为hive的update的set子句还不支持子查询,所以这里使用了一个临时表存储需要更新的记录,用先delete再insert代替update -- 因为SCD1本身就不保存历史数据,所以这里更新维度表里的所有customer_name改变的记录,而不是仅仅更新当前版本的记录 DROP TABLE IF EXISTS tmp; CREATE TABLE tmp AS SELECT a.customer_sk, a.customer_number, b.customer_name, a.customer_street_address, a.customer_zip_code, a.customer_city, a.customer_state, a.shipping_address, a.shipping_zip_code, a.shipping_city, a.shipping_state, a.version, a.effective_date, a.expiry_date FROM customer_dim a, rds.customer b WHERE a.customer_number = b.customer_number AND !(a.customer_name <=> b.customer_name); DELETE FROM customer_dim WHERE customer_dim.customer_sk IN (SELECT customer_sk FROM tmp); INSERT INTO customer_dim SELECT * FROM tmp; -- 处理新增的customer记录 INSERT INTO customer_dim SELECT ROW_NUMBER() OVER (ORDER BY t1.customer_number) + t2.sk_max, t1.customer_number, t1.customer_name, t1.customer_street_address, t1.customer_zip_code, t1.customer_city, t1.customer_state, t1.shipping_address, t1.shipping_zip_code, t1.shipping_city, t1.shipping_state, 1, ${hivevar:pre_date}, ${hivevar:max_date} FROM ( SELECT t1.* FROM rds.customer t1 LEFT JOIN customer_dim t2 ON t1.customer_number = t2.customer_number WHERE t2.customer_sk IS NULL) t1 CROSS JOIN (SELECT COALESCE(MAX(customer_sk),0) sk_max FROM customer_dim) t2; -- 装载product维度 -- 设置已删除记录和product_name、product_category列上SCD2的过期 UPDATE product_dim SET expiry_date = ${hivevar:pre_date} WHERE product_dim.product_sk IN (SELECT a.product_sk FROM (SELECT product_sk,product_code,product_name,product_category FROM product_dim WHERE expiry_date = ${hivevar:max_date}) a LEFT JOIN rds.product b ON a.product_code = b.product_code WHERE b.product_code IS NULL OR (a.product_name <> b.product_name OR a.product_category <> b.product_category)); -- 处理product_name、product_category列上SCD2的新增行 INSERT INTO product_dim SELECT ROW_NUMBER() OVER (ORDER BY t1.product_code) + t2.sk_max, t1.product_code, t1.product_name, t1.product_category, t1.version, t1.effective_date, t1.expiry_date FROM ( SELECT t2.product_code product_code, t2.product_name product_name, t2.product_category product_category, t1.version + 1 version, ${hivevar:pre_date} effective_date, ${hivevar:max_date} expiry_date FROM product_dim t1 INNER JOIN rds.product t2 ON t1.product_code = t2.product_code AND t1.expiry_date = ${hivevar:pre_date} LEFT JOIN product_dim t3 ON t1.product_code = t3.product_code AND t3.expiry_date = ${hivevar:max_date} WHERE (t1.product_name <> t2.product_name OR t1.product_category <> t2.product_category) AND t3.product_sk IS NULL) t1 CROSS JOIN (SELECT COALESCE(MAX(product_sk),0) sk_max FROM product_dim) t2; -- 处理新增的product记录 INSERT INTO product_dim SELECT ROW_NUMBER() OVER (ORDER BY t1.product_code) + t2.sk_max, t1.product_code, t1.product_name, t1.product_category, 1, ${hivevar:pre_date}, ${hivevar:max_date} FROM ( SELECT t1.* FROM rds.product t1 LEFT JOIN product_dim t2 ON t1.product_code = t2.product_code WHERE t2.product_sk IS NULL) t1 CROSS JOIN (SELECT COALESCE(MAX(product_sk),0) sk_max FROM product_dim) t2; -- 装载order维度 INSERT INTO order_dim SELECT ROW_NUMBER() OVER (ORDER BY t1.order_number) + t2.sk_max, t1.order_number, t1.version, t1.effective_date, t1.expiry_date FROM ( SELECT order_number order_number, 1 version, order_date effective_date, ‘2200-01-01‘ expiry_date FROM rds.sales_order, rds.cdc_time WHERE entry_date >= last_load AND entry_date < current_load ) t1 CROSS JOIN (SELECT COALESCE(MAX(order_sk),0) sk_max FROM order_dim) t2; -- 装载销售订单事实表 INSERT INTO sales_order_fact SELECT order_sk, customer_sk, product_sk, date_sk, order_amount, order_quantity FROM rds.sales_order a, order_dim b, customer_dim c, product_dim d, date_dim e, rds.cdc_time f WHERE a.order_number = b.order_number AND a.customer_number = c.customer_number AND a.order_date >= c.effective_date AND a.order_date < c.expiry_date AND a.product_code = d.product_code AND a.order_date >= d.effective_date AND a.order_date < d.expiry_date AND to_date(a.order_date) = e.date AND a.entry_date >= f.last_load AND a.entry_date < f.current_load ; -- 更新时间戳表的last_load字段 INSERT OVERWRITE TABLE rds.cdc_time SELECT current_load, current_load FROM rds.cdc_time;
USE source; /*** 客户数据的改变如下: 更新已有八个客户的送货地址 新增客户9 ***/ UPDATE customer SET shipping_address = customer_street_address , shipping_zip_code = customer_zip_code , shipping_city = customer_city , shipping_state = customer_state ; INSERT INTO customer (customer_name , customer_street_address , customer_zip_code , customer_city , customer_state , shipping_address , shipping_zip_code , shipping_city , shipping_state) VALUES (‘Online Distributors‘ , ‘2323 Louise Dr.‘ , 17055 , ‘Pittsburgh‘ , ‘PA‘ , ‘2323 Louise Dr.‘ , 17055 , ‘Pittsburgh‘ , ‘PA‘) ; /*** 新增订单日期为2016年7月12日的9条订单。 ***/ SET @start_date := unix_timestamp(‘2016-07-12‘); SET @end_date := unix_timestamp(‘2016-07-13‘); DROP TABLE IF EXISTS temp_sales_order_data; CREATE TABLE temp_sales_order_data AS SELECT * FROM sales_order WHERE 1=0; SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (117, 1, 1, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (118, 2, 2, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (119, 3, 3, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (120, 4, 4, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (121, 5, 1, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (122, 6, 2, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (123, 7, 3, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (124, 8, 4, @order_date, @order_date, @amount, @quantity); SET @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date)); SET @amount := floor(1000 + rand() * 9000); SET @quantity := floor(10 + rand() * 90); INSERT INTO temp_sales_order_data VALUES (125, 9, 1, @order_date, @order_date, @amount, @quantity); INSERT INTO sales_order SELECT NULL,customer_number,product_code,order_date,entry_date,order_amount,order_quantity FROM temp_sales_order_data ORDER BY order_date; COMMIT ;修改后的客户源数据如下图所示。
./regular_etl.sh使用下面的查询验证结果。
use dw; select customer_number no, customer_name name, shipping_city, shipping_zip_code zip, shipping_state st, version ver, effective_date eff, expiry_date exp from customer_dim;已存在客户的新记录有了送货地址。老的(过期)记录没有。9号客户是新加的,具有送货地址。如下图所示。
select order_sk o_sk, customer_sk c_sk, product_sk p_sk, order_date_sk od_sk, order_amount amt, order_quantity qty from sales_order_fact cluster by o_sk;只有9个订单有数量,老的销售数据没有。如下图所示。
select * from rds.cdc_time;时间戳表的最后装载日期已经更新。如下图所示。
原文:http://blog.csdn.net/wzy0623/article/details/51900172