首页 > 其他 > 详细

codevs3732==洛谷 解方程P2312 解方程

时间:2016-07-15 23:52:23      阅读:476      评论:0      收藏:0      [点我收藏+]

P2312 解方程

    • 195通过
    • 1.6K提交
  • 题目提供者该用户不存在
  • 标签数论(数学相关)高精2014NOIp提高组
  • 难度提高+/省选-

提交该题 讨论 题解 记录

 

题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

 

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

 

输出格式:

 

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

 

输入输出样例

输入样例#1:
2 10 
1
-2
1
输出样例#1:
1
1
输入样例#2:
2 10
2
-3
1
输出样例#2:
2
1
2
输入样例#3:
2 10 
1  
3  
2  
 
输出样例#3:
0

说明

30%:0<n<=2,|ai|<=100,an!=0,m<100

50%:0<n<=100,|ai|<=10^100,an!=0,m<100

70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000

100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000

技术分享

 

AC代码(写的有点乱):

#include<cstdio>
#include<cstring>
using namespace std;
int mod[5]={11261,19997,22877,21893,14843};
int n,m;
int ans[1000005];
int a[5][105],pre[5][105],res[5][30005];
char ch[10005];
inline int read(){
    register int f=1,x=0;
    register char ch=getchar();
    while(ch>9||ch<0){if(ch==-)f=-1;ch=getchar();}
    while(ch>=0&&ch<=9){x=x*10+ch-0;ch=getchar();}
    return x*f;
}
inline int cal(int t,int x){
    int sum=0;
    for(int i=0;i<=n;i++)
        sum=(sum+a[t][i]*pre[t][i])%mod[t];
    if(sum<0)sum+=mod[t];
    return sum;
}
inline bool jud(int x){
    for(int j=0;j<5;j++)
        if(res[j][x%mod[j]]!=0)return 0;
    return 1;
}
int main(){    
    n=read();m=read();
    //scanf("%d%d",&n,&m);
    for(int i=0,x;i<=n;i++){
        //scanf("%d",&x);
        /*x=read();
        for(int j=0;j<5;j++){
            a[j][i]=x;
        }*/
        scanf("%s",ch+1);
        int l=strlen(ch+1);
        bool flag=0;
        for(int t=0;t<5;t++)
            if(ch[1]!=-)a[t][i]=ch[1]-0;
            else a[t][i]=0,flag=1;
        for(int t=0;t<5;t++){
            for(int k=2;k<=l;k++)
                a[t][i]=(a[t][i]*10+ch[k]-0)%mod[t];
            if(flag)a[t][i]=-a[t][i];
        }    
    }
    for(int j=0;j<5;j++){
        for(int k=1;k<mod[j];k++){
            pre[j][0]=1;
            for(int i=1;i<=n;i++) pre[j][i]=(pre[j][i-1]*k)%mod[j];
            res[j][k]=cal(j,k);
        }
    }
    for(int i=1;i<=m;i++)
        if(jud(i))ans[++ans[0]]=i;
    printf("%d\n",ans[0]);
    for(int i=1;i<=ans[0];i++)
        printf("%d\n",ans[i]);
    return 0;
}

 

codevs3732==洛谷 解方程P2312 解方程

原文:http://www.cnblogs.com/shenben/p/5674743.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!