首页 > 其他 > 详细

辗转相除法

时间:2016-07-17 04:19:37      阅读:295      评论:0      收藏:0      [点我收藏+]

辗转相除法, 又名欧几里德算法(Euclidean algorithm)乃求两个正整数之最大公因子的算法。它是已知最古老的算法, 其可追溯至3000年前。

?

设两数为a、b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1)。若r1=0,则(a,b)=b;若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止。其最后一个为被除数的余数的除数即为(a, b)。

例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......0,最后一个为被除数余数的除数就是5,5就是所求最大公约数。

?

?

?

原理

设两数为a、b(a<b),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。

第一步:令c=gcd(a,b),则设a=mc,b=nc

第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c

第三步:根据第二步结果可知c也是r的因数

第四步:可以断定m-kn与n互质【假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾】,因此c也是b与r的最大公约数。

从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。

证毕。

以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。

?

?

?

相关原理

两个整数的最大公约数是能够同时整除它们的最大的正整数。

辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。

例如,252和105的最大公约数是21(252 = 21 × 12;105 = 21 × 5);

因为252 ÷105 = 2......42,所以(105,42)是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至余数变为零。这时的除数就是所求的两个数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21 = 5 × 105 + (?2) × 252。这个重要的等式叫做贝祖等式(又称“裴蜀定理”)。

辗转相除法

原文:http://gaojingsong.iteye.com/blog/2311565

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!