#define
offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
/**
*
container_of - cast a member of a structure out to the containing
structure
* @ptr: the pointer to the
member.
* @type: the type of the
container struct this is embedded in.
*
@member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member)
({
\
const typeof( ((type
*)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr -
offsetof(type,member) );})
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
#include
<linux/stddef.h>
#include <linux/poison.h>
#include <linux/prefetch.h>
#include
<asm/system.h>
/*
* Simple
doubly linked list implementation.
*
* Some
of the internal functions ("__xxx") are useful when
*
manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct
list_head {
struct list_head *next,
*prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define
LIST_HEAD(name) \
struct list_head name
= LIST_HEAD_INIT(name)
static
inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
/*
* Insert
a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef
CONFIG_DEBUG_LIST
将new查到prev和next中间
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next);
#endif
/**
*
list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
*
This is good for implementing stacks.
*/
将new插入的head后面。
static inline
void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head,
head->next);
}
/**
*
list_add_tail - add a new entry
* @new: new entry to be
added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
将new插入到head前面
static inline void list_add_tail(struct list_head
*new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Delete
a list entry by making the prev/next entries
* point to
each other.
*
* This is only for internal
list manipulation where we know
* the prev/next entries
already!
*/
删除prev和next中间的结点
static
inline void __list_del(struct list_head * prev, struct list_head *
next)
{
next->prev =
prev;
prev->next = next;
}
/**
*
list_del - deletes entry from list.
* @entry: the
element to delete from the list.
* Note: list_empty() on
entry does not return true after this, the entry is
* in
an undefined state.
*/
从链表中删除entry所在的结点,不释放entry的空间
#define
LIST_POISON1 ((void *) 0x00100100)
#define
LIST_POISON2 ((void *) 0x00200200)
#ifndef
CONFIG_DEBUG_LIST
static inline void list_del(struct
list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void list_del(struct
list_head *entry);
#endif
/**
*
list_replace - replace old entry by new one
* @old : the
element to be replaced
* @new : the new element to
insert
*
* If @old was empty, it will be
overwritten.
*/
将old替换为new
static inline void list_replace(struct list_head
*old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
将old替换为new,并且将old重新初始化
static
inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
/**
*
list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
从链表中删除entry,并且将entry重新初始化
static inline void list_del_init(struct list_head
*entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}
/**
*
list_move - delete from one list and add as another‘s head
* @list: the entry to move
* @head: the head that
will precede our entry
*/
将list从原来的链表移动到head链表中
static inline void
list_move(struct list_head *list, struct list_head *head)
{
__list_del(list->prev,
list->next);
list_add(list,
head);
}
/**
*
list_move_tail - delete from one list and add as another‘s tail
* @list: the entry to move
* @head: the head that
will follow our entry
*/
将list从原先的链表中删除,添加到head链表中(并且查到head的前边)
static inline void
list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del(list->prev, list->next);
list_add_tail(list, head);
}
/**
*
list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head
of the list
*/
判断list是不是链表head的尾结点
static inline int list_is_last(const
struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
/**
*
list_empty - tests whether a list is empty
* @head: the
list to test.
*/
static inline
int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
*
list_empty_careful - tests whether a list is empty and not being
modified
* @head: the list to test
*
* Description:
* tests whether a list is empty
_and_ checks that no other CPU might be
* in the process
of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline
int list_empty_careful(const struct list_head *head)
{
struct list_head *next =
head->next;
return (next == head)
&& (next == head->prev);
}
/**
*
list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static inline
int list_is_singular(const struct list_head *head)
{
return !list_empty(head) &&
(head->next == head->prev);
}
static
inline void __list_cut_position(struct list_head *list,
struct list_head
*head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}
/**
*
list_cut_position - cut a list into two
* @list: a new
list to add all removed entries
* @head: a list with
entries
* @entry: an entry within head, could be the
head itself
* and if so we won‘t cut
the list
*
* This helper moves the initial
part of @head, up to and
* including @entry, from @head
to @list. You should
* pass on @entry an element you
know is on @head. @list
* should be an empty list or a
list you do not care about
* losing its data.
*
*/
static inline void
list_cut_position(struct list_head *list,
struct list_head
*head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next !=
entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}
static inline void
__list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last =
list->prev;
first->prev = prev;
prev->next =
first;
last->next = next;
next->prev =
last;
}
/**
*
list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to
add it in the first list.
*/
static inline
void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list,
head, head->next);
}
/**
*
list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to
add it in the first list.
*/
static inline
void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list,
head->prev, head);
}
/**
*
list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the
place to add it in the first list.
*
* The
list at @list is reinitialised
*/
static
inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list,
head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
*
list_splice_tail_init - join two lists and reinitialise the emptied
list
* @list: the new list to add.
* @head:
the place to add it in the first list.
*
*
Each of the lists is a queue.
* The list at @list is
reinitialised
*/
static inline void
list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list,
head->prev, head);
INIT_LIST_HEAD(list);
}
}
/**
*
list_entry - get the struct for this entry
*
@ptr: the &struct list_head pointer.
* @type: the type of the struct this is
embedded in.
* @member: the name of
the list_struct within the struct.
*/
#define
list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
*
list_first_entry - get the first element from a list
*
@ptr: the list head to take the element from.
* @type: the type of the struct this is
embedded in.
* @member: the name of
the list_struct within the struct.
*
* Note,
that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type,
member)
/**
*
list_for_each - iterate over a
list
* @pos: the &struct list_head
to use as a loop cursor.
* @head: the
head for your list.
*/
#define
list_for_each(pos, head) \
for (pos =
(head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)
/**
*
__list_for_each - iterate over a
list
* @pos: the &struct list_head
to use as a loop cursor.
* @head: the
head for your list.
*
* This variant differs
from list_for_each() in that it‘s the
* simplest
possible list iteration code, no prefetching is done.
*
Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head);
pos = pos->next)
/**
*
list_for_each_prev - iterate
over a list backwards
* @pos: the
&struct list_head to use as a loop cursor.
*
@head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev;
prefetch(pos->prev), pos != (head); \
pos = pos->prev)
/**
*
list_for_each_safe - iterate over a list safe against removal of
list entry
* @pos: the &struct
list_head to use as a loop cursor.
*
@n: another &struct
list_head to use as temporary storage
*
@head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next;
pos != (head); \
pos = n, n =
pos->next)
/**
*
list_for_each_prev_safe - iterate over a list backwards safe against
removal of list entry
* @pos: the
&struct list_head to use as a loop cursor.
*
@n: another &struct
list_head to use as temporary storage
*
@head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev;
\
prefetch(pos->prev), pos != (head); \
pos = n, n =
pos->prev)
/**
*
list_for_each_entry - iterate
over list of given type
* @pos: the
type * to use as a loop cursor.
*
@head: the head for your list.
*
@member: the name of the list_struct within the
struct.
*/
#define list_for_each_entry(pos,
head,
member)
\
for (pos =
list_entry((head)->next, typeof(*pos), member);
\
prefetch(pos->member.next), &pos->member !=
(head); \
pos =
list_entry(pos->member.next, typeof(*pos),
member))
/**
*
list_for_each_entry_reverse - iterate backwards over list of given
type.
* @pos: the type * to use as a
loop cursor.
* @head: the head for
your list.
* @member: the name of the
list_struct within the struct.
*/
#define
list_for_each_entry_reverse(pos, head,
member)
\
for (pos =
list_entry((head)->prev, typeof(*pos), member);
\
prefetch(pos->member.prev), &pos->member !=
(head); \
pos =
list_entry(pos->member.prev, typeof(*pos),
member))
/**
*
list_prepare_entry - prepare a pos entry for use in
list_for_each_entry_continue()
* @pos:
the type * to use as a start point
*
@head: the head of the list
*
@member: the name of the list_struct within the
struct.
*
* Prepares a pos entry for use as
a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos),
member))
/**
*
list_for_each_entry_continue - continue iteration over list of given
type
* @pos: the type * to use as a
loop cursor.
* @head: the head for
your list.
* @member: the name of the
list_struct within the struct.
*
* Continue
to iterate over list of given type, continuing after
*
the current position.
*/
#define
list_for_each_entry_continue(pos, head,
member) \
for (pos = list_entry(pos->member.next,
typeof(*pos), member); \
prefetch(pos->member.next), &pos->member !=
(head); \
pos =
list_entry(pos->member.next, typeof(*pos),
member))
/**
*
list_for_each_entry_continue_reverse - iterate backwards from the
given point
* @pos: the type * to use
as a loop cursor.
* @head: the head
for your list.
* @member: the name of
the list_struct within the struct.
*
* Start
to iterate over list of given type backwards, continuing after
* the current position.
*/
#define
list_for_each_entry_continue_reverse(pos, head,
member) \
for (pos = list_entry(pos->member.prev,
typeof(*pos), member); \
prefetch(pos->member.prev), &pos->member !=
(head); \
pos =
list_entry(pos->member.prev, typeof(*pos),
member))
/**
*
list_for_each_entry_from - iterate over list of given type from the
current point
* @pos: the type * to
use as a loop cursor.
* @head: the
head for your list.
* @member: the
name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos,
head,
member)
\
for (;
prefetch(pos->member.next), &pos->member !=
(head); \
pos =
list_entry(pos->member.next, typeof(*pos),
member))
/**
*
list_for_each_entry_safe - iterate over list of given type safe
against removal of list entry
* @pos:
the type * to use as a loop cursor.
*
@n: another type * to use
as temporary storage
* @head: the head
for your list.
* @member: the name of
the list_struct within the struct.
*/
#define
list_for_each_entry_safe(pos, n, head,
member)
\
for (pos =
list_entry((head)->next, typeof(*pos), member),
\
n =
list_entry(pos->member.next, typeof(*pos),
member); \
&pos->member !=
(head);
\
pos =
n, n = list_entry(n->member.next, typeof(*n),
member))
/**
*
list_for_each_entry_safe_continue
*
@pos: the type * to use as a loop cursor.
* @n: another type *
to use as temporary storage
* @head:
the head for your list.
* @member: the
name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head,
member) \
for (pos = list_entry(pos->member.next,
typeof(*pos),
member), \
n =
list_entry(pos->member.next, typeof(*pos),
member); \
&pos->member !=
(head);
\
pos =
n, n = list_entry(n->member.next, typeof(*n),
member))
/**
*
list_for_each_entry_safe_from
* @pos:
the type * to use as a loop cursor.
*
@n: another type * to use
as temporary storage
* @head: the head
for your list.
* @member: the name of
the list_struct within the struct.
*
*
Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define
list_for_each_entry_safe_from(pos, n, head,
member)
\
for (n =
list_entry(pos->member.next, typeof(*pos),
member); \
&pos->member !=
(head);
\
pos =
n, n = list_entry(n->member.next, typeof(*n),
member))
/**
*
list_for_each_entry_safe_reverse
*
@pos: the type * to use as a loop cursor.
* @n: another type *
to use as temporary storage
* @head:
the head for your list.
* @member: the
name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define
list_for_each_entry_safe_reverse(pos, n, head,
member) \
for (pos = list_entry((head)->prev,
typeof(*pos), member), \
n =
list_entry(pos->member.prev, typeof(*pos),
member); \
&pos->member !=
(head);
\
pos =
n, n = list_entry(n->member.prev, typeof(*n),
member))
/*
* Double
linked lists with a single pointer list head.
* Mostly
useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access
the tail in O(1).
*/
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
#define HLIST_HEAD_INIT
{ .first = NULL }
#define HLIST_HEAD(name) struct
hlist_head name = { .first = NULL }
#define
INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static
inline void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
}
static inline int
hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}
static inline int
hlist_empty(const struct hlist_head *h)
{
return !h->first;
}
static inline void
__hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev =
pprev;
}
static inline void
hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev
= LIST_POISON2;
}
static inline void
hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}
static inline void
hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first =
h->first;
n->next = first;
if (first)
first->pprev =
&n->next;
h->first = n;
n->pprev = &h->first;
}
/* next must be != NULL
*/
static inline void hlist_add_before(struct hlist_node
*n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev =
&n->next;
*(n->pprev) = n;
}
static inline void
hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next
= next;
next->pprev =
&n->next;
if(next->next)
next->next->pprev = &next->next;
}
/*
* Move a
list from one list head to another. Fixup the pprev
*
reference of the first entry if it exists.
*/
static inline void hlist_move_list(struct hlist_head *old,
struct hlist_head *new)
{
new->first = old->first;
if
(new->first)
new->first->pprev = &new->first;
old->first = NULL;
}
#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
#define
hlist_for_each(pos, head) \
for (pos =
(head)->first; pos && ({ prefetch(pos->next); 1; }); \
pos =
pos->next)
#define
hlist_for_each_safe(pos, n, head) \
for
(pos = (head)->first; pos && ({ n = pos->next; 1; });
\
pos =
n)
/**
*
hlist_for_each_entry - iterate over list of given
type
* @tpos: the type * to use as a
loop cursor.
* @pos: the &struct
hlist_node to use as a loop cursor.
*
@head: the head for your list.
*
@member: the name of the hlist_node within the
struct.
*/
#define hlist_for_each_entry(tpos,
pos, head,
member)
\
for (pos =
(head)->first;
\
pos
&& ({ prefetch(pos->next); 1;})
&&
\
({ tpos =
hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos =
pos->next)
/**
*
hlist_for_each_entry_continue - iterate over a hlist continuing
after current point
* @tpos: the type
* to use as a loop cursor.
* @pos: the
&struct hlist_node to use as a loop cursor.
*
@member: the name of the hlist_node within the
struct.
*/
#define
hlist_for_each_entry_continue(tpos, pos,
member) \
for (pos =
(pos)->next;
\
pos
&& ({ prefetch(pos->next); 1;})
&&
\
({ tpos =
hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos =
pos->next)
/**
*
hlist_for_each_entry_from - iterate over a hlist continuing from
current point
* @tpos: the type * to
use as a loop cursor.
* @pos: the
&struct hlist_node to use as a loop cursor.
*
@member: the name of the hlist_node within the
struct.
*/
#define
hlist_for_each_entry_from(tpos, pos,
member)
\
for (; pos && ({
prefetch(pos->next); 1;})
&&
\
({ tpos =
hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos =
pos->next)
/**
*
hlist_for_each_entry_safe - iterate over list of given type safe
against removal of list entry
* @tpos:
the type * to use as a loop cursor.
*
@pos: the &struct hlist_node to use as a loop
cursor.
* @n:
another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the
struct.
*/
#define
hlist_for_each_entry_safe(tpos, pos, n, head,
member) \
for (pos =
(head)->first;
\
pos
&& ({ n = pos->next; 1; })
&&
\
({ tpos =
hlist_entry(pos, typeof(*tpos), member); 1;}); \
pos =
n)
#endif
原文:http://www.cnblogs.com/pengdonglin137/p/3712201.html