首页 > 编程语言 > 详细

SVM与C++源码实现

时间:2014-05-07 00:47:55      阅读:722      评论:0      收藏:0      [点我收藏+]

1. 推导出函数间隔最小

2. 约束优化函数变形至如下形式

 

/*
min 1/2*||w||^2
s.t.  (w[i]*x[i] + b[i] - y[i]) >= 0;
*/

 

3. 对偶函数

 

/*
min(para alpha) 1/2*sum(i)sum(j)(alpha[i]*alpha[j]*y[i]*y[j]*x[i]*x[j]) - sum(alpha[i])
s.t. sum(alpha[i] * y[i]) = 0
C>= alpha[i] >= 0
*

 

4. 根据KKT条件优化。。


下面是C++代码

 

bubuko.com,布布扣
/*********************************************************
**CopyRight by Weidi Xu, S.C.U.T in Guangdong, Guangzhou**
**********************************************************/

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>

using std::sort;
using std::fabs;

const int MAX_DIMENSION = 2;
const int MAX_SAMPLES = 3;
double x[MAX_SAMPLES][MAX_DIMENSION];
double y[MAX_SAMPLES];
double alpha[MAX_SAMPLES];
double w[MAX_DIMENSION];
double b;
double c;
double eps = 1e-6;
struct _E{
    double val;
    int index;
}E[MAX_SAMPLES];

bool cmp(const _E & a, const _E & b)
{
    return a.val < b.val;
}

int num_dimension;
int num_samples;

double max(double a,double b)
{
    return a>b?a:b;
}

double min(double a,double b)
{
    return a>b?b:a;
}

double kernal(double x1[], double x2[], double dimension)
{
    double ans = 0 ;
    for(int i = 0 ; i < dimension; i++)
    {
        ans += x1[i]*x2[i];
    }
    return ans;
}

double target_function()
{
    double ans = 0;
    for(int i = 0 ; i < num_samples; i++)
    {
        for(int j = 0 ; j < num_samples; j++)
        {
            ans += alpha[i]*alpha[j]*y[i]*y[j]*kernal(x[i],x[j],num_dimension);
        }
    }

    for(int i = 0 ; i < num_samples; i++)
    {
        ans -= alpha[i];
    }

    return ans;
}


double g(double _x[], int dimension)
{
    double ans = b;

    for(int i = 0 ; i < num_samples; i++)
    {
        ans += alpha[i]*y[i]*kernal(x[i],_x,dimension);
    }

    return ans;
}

bool satisfy_constrains(int i, int dimension)
{
    if(alpha[i] == 0)
    {
        if(y[i]*g(x[i], dimension) >= 1)
        return true;
        else
        return false;
    }
    else if( alpha[i] > 0 && alpha[i] < c)
    {
        if(y[i] * g(x[i], dimension) ==  1)
        return true;
        else
        return false;
    }
    else
    {
        if(y[i] * g(x[i], dimension) <=  1)
        return true;
        else
        return false;
    }
}


double calE(int i, int dimension)
{
    return g(x[i], dimension) - y[i];
}

void calW()
{
    for(int i = 0 ; i < num_dimension; i++)
    {
        w[i] = 0;
        for(int j = 0 ; j < num_samples; j++)
        {
            w[i] += alpha[j] * y[j] * x[j][i];
        }
    }
    return ;
}

void calB()
{
    double ans = y[0];
    for(int i = 0 ;  i < num_samples ; i++)
    {
        ans -= y[i]*alpha[i]*kernal(x[i], x[0], num_dimension);
    }
    b = ans;
    return;
}


void recalB(int alpha1index,int alpha2index, int dimension, double alpha1old, double alpha2old)
{
    double alpha1new = alpha[alpha1index];
    double alpha2new = alpha[alpha2index];

    alpha[alpha1index] = alpha1old;
    alpha[alpha2index] = alpha2old;

    double e1 = calE(alpha1index, num_dimension);
    double e2 = calE(alpha2index, num_dimension);

    alpha[alpha1index] = alpha1new;
    alpha[alpha2index] = alpha2new;

    double b1new = -e1 - y[alpha1index]*kernal(x[alpha1index], x[alpha1index], dimension)*(alpha1new - alpha1old);
    b1new -= y[alpha2index]*kernal(x[alpha2index], x[alpha1index], dimension)*(alpha2new - alpha2old) + b;

    double b2new = -e2 - y[alpha1index]*kernal(x[alpha1index], x[alpha2index], dimension)*(alpha1new - alpha1old);
    b1new -= y[alpha2index]*kernal(x[alpha2index], x[alpha2index], dimension)*(alpha2new - alpha2old) + b;

    b = (b1new + b2new)/2;
}

bool optimizehelp(int alpha1index,int alpha2index)
{
    double alpha1new = alpha[alpha1index];
    double alpha2new = alpha[alpha2index];

    double alpha1old = alpha[alpha1index];
    double alpha2old = alpha[alpha2index];

    double H,L;

    if(fabs(y[alpha1index] - y[alpha2index]) > eps)
    {
        L = max(0, alpha2old - alpha1old);
        H = min(c, c + alpha2old - alpha1old);
    }
    else
    {
        L = max(0, alpha2old + alpha1old - c);
        H = min(c, alpha2old + alpha1old);
    }

    //cal new
    double lena = kernal(x[alpha1index], x[alpha1index], num_dimension) + kernal(x[alpha2index], x[alpha2index], num_dimension) - 2*kernal(x[alpha1index], x[alpha2index], num_dimension);
    alpha2new = alpha2old + y[alpha2index]*(calE(alpha1index, num_dimension) - calE(alpha2index, num_dimension))/lena;

    if(alpha2new > H)
    {
        alpha2new = H;
    }
    else if( alpha2new < L)
    {
        alpha2new = L;
    }

    alpha1new = alpha1old + y[alpha1index]*y[alpha2index]*(alpha2old - alpha2new);

    double energyold = target_function();

    alpha[alpha1index] = alpha1new;
    alpha[alpha2index] = alpha2new;

    double gap = 0.001;

    recalB(alpha1index, alpha2index, num_dimension, alpha1old, alpha2old);
    return true;
}

bool optimize()
{
    int alpha1index = -1;
    int alpha2index = -1;
    double alpha2new = 0;
    double alpha1new = 0;

    //cal E[]
    for(int i = 0 ; i < num_samples; i++)
    {
        E[i].val = calE(i, num_dimension);
        E[i].index = i;
    }

    //traverse the alpha1index with 0 < && < c
    for(int i = 0 ; i < num_samples; i++)
    {
        alpha1new = alpha[i];

        if(alpha1new > 0 && alpha1new < c)
        {

            if(satisfy_constrains(i, num_dimension))
            continue;

            sort(E, E+num_samples, cmp);

            //simply find the maximum or minimun;
            if(alpha1new > 0)
            {
                if(E[0].index == i)
                {
                    ;
                }
                else
                {
                    alpha1index = i;
                    alpha2index = E[0].index;
                    if(optimizehelp(alpha1index, alpha2index))
                    {
                        return true;
                    }
                }
            }
            else
            {
                if(E[num_samples-1].index == i)
                {
                    ;
                }
                else
                {
                    alpha1index = i;
                    alpha2index = E[num_samples-1].index;
                    if(optimizehelp(alpha1index, alpha2index))
                    {
                        return true;
                    }
                }
            }


            //find the alpha2 > 0 && < c
            for(int j = 0 ; j < num_samples; j++)
            {
                alpha2new = alpha[j];

                if(alpha2new > 0 && alpha2new < c)
                {
                    alpha1index = i;
                    alpha2index = j;
                    if(optimizehelp(alpha1index , alpha2index))
                    {
                        return true;
                    }
                }
            }

            //find other alpha2
            for(int j = 0 ; j < num_samples; j++)
            {
                alpha2new = alpha[j];

                if(!(alpha2new > 0 && alpha2new < c))
                {
                    alpha1index = i;
                    alpha2index = j;
                    if(optimizehelp(alpha1index , alpha2index))
                    {
                        return true;
                    }
                }
            }
        }
    }

    //find all alpha1
    for(int i = 0 ; i < num_samples; i++)
    {
        alpha1new = alpha[i];

        if(!(alpha1new > 0 && alpha1new < c))
        {
            if(satisfy_constrains(i, num_dimension))
            continue;

            sort(E, E+num_samples, cmp);

            //simply find the maximum or minimun;
            if(alpha1new > 0)
            {
                if(E[0].index == i)
                {
                    ;
                }
                else
                {
                    alpha1index = i;
                    alpha2index = E[0].index;
                    if(optimizehelp(alpha1index, alpha2index))
                    {
                        return true;
                    }
                }
            }
            else
            {
                if(E[num_samples-1].index == i)
                {
                    ;
                }
                else
                {
                    alpha1index = i;
                    alpha2index = E[num_samples-1].index;
                    if(optimizehelp(alpha1index, alpha2index))
                    {
                        return true;
                    }
                }
            }


            //find the alpha2 > 0 && < c
            for(int j = 0 ; j < num_samples; j++)
            {
                alpha2new = alpha[j];

                if(alpha2new > 0 && alpha2new < c)
                {
                    alpha1index = i;
                    alpha2index = j;
                    if(optimizehelp(alpha1index , alpha2index))
                    {
                        return true;
                    }
                }
            }

            //find other alpha2
            for(int j = 0 ; j < num_samples; j++)
            {
                alpha2new = alpha[j];

                if(!(alpha2new > 0 && alpha2new < c))
                {
                    alpha1index = i;
                    alpha2index = j;
                    if(optimizehelp(alpha1index , alpha2index))
                    {
                        return true;
                    }
                }
            }
        }
    }

    //for(int i = 0 ; i < num_samples; i++)
    //{
    //    alpha1new = alpha[i];

    //    for(int j = 0 ; j < num_samples; j++)
    //    {
    //        if(1)
    //        {
    //            alpha1index = i;
    //            alpha2index = j;
    //            if(optimizehelp(alpha1index , alpha2index))
    //            {
    //                return true;
    //            }
    //        }
    //    }
    //}
    return false;
}

bool check()
{
    double sum = 0;
    for(int i = 0 ; i < num_samples; i++)
    {
        sum += alpha[i] * y[i];
        if(!(0 <= alpha[i] && alpha[i] <= c))
        {
            printf("alpha[%d]: %lf wrong\n", i, alpha[i]);
            return false;
        }
        if(!satisfy_constrains(i, num_dimension))
        {
            printf("alpha[%d] not satisfy constrains\n", i);
            return false;
        }
    }

    if(fabs(sum) > eps)
    {
        printf("Sum = %lf\n", sum);
        return false;
    }
    return true;
}
/*
min 1/2*||w||^2
s.t.  (w[i]*x[i] + b[i] - y[i]) >= 0;
*/
/*
step 1: cal alpha[]
step 2: cal w,b
*/

/*
min(para alpha) 1/2*sum(i)sum(j)(alpha[i]*alpha[j]*y[i]*y[j]*x[i]*x[j]) - sum(alpha[i])
s.t. sum(alpha[i] * y[i]) = 0
C>= alpha[i] >= 0
*/

int main()
{
    scanf("%d%d", &num_samples, &num_dimension);

    for(int i = 0 ; i < num_samples; i++)
    {
        for(int j = 0; j < num_dimension; j++)
        {
            scanf("%lf",&x[i][j]);
        }
        scanf("%lf",&y[i]);
    }
    c = 1;

    //初值附为0;
    for(int i = 0 ; i < num_samples; i++)
    {
        alpha[i] = 0;
    }

    int count = 0;
    while(optimize()){
        calB();
        count++;
    }
    printf("%d ",count);

    calW();
    calB();

    printf("y = ");

    for(int i = 0 ; i < num_dimension; i++)
    {
        printf("%lf * x[%d] + ", w[i], i);
    }
    printf("%lf\n", b);

    if(!check())
    printf("Not satisfy KKT.\n");
    else
    printf("Satisfy KKT\n");
}

/*
3 2
3 3 1
4 3 1
1 1 -1
*/
bubuko.com,布布扣

 


 


 

实验结论:

1. SVM的收敛与迭代顺序和初值基本无关。
2. 将不满足kkt条件的alpha值进行修改不一定减少目标函数(未验证,实验的感觉是这样的)。因为加入每次目标函数减少的限制后,不收敛到最优值。

SVM与C++源码实现,布布扣,bubuko.com

SVM与C++源码实现

原文:http://www.cnblogs.com/wead-hsu/p/3712469.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!