首页 > 其他 > 详细

深度图转点云的原理

时间:2016-07-29 18:43:13      阅读:594      评论:0      收藏:0      [点我收藏+]

深度图转点云的计算过程很简洁,而里面的原理实际是从内外参矩阵变换得到.下面来介绍其推导的过程.

1. 原理

首先,要了解下世界坐标到图像的映射过程,可以参考下教程"相机标定(2)---摄像机标定原理",这里不做赘述.用公式具体的表达如下:

\(z_{c}\begin{bmatrix}u\\ v\\ 1\end{bmatrix}=\begin{bmatrix}f/dx & 0 & u_{0}\\ 0 & f/dy & v_{0}\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}R & T\\ 0 & 1\\ \end{bmatrix}\begin{bmatrix}x_{w}\\ y_{w}\\ z_{w}\\ 1\end{bmatrix} \)

 

2. 代码

#ifndef DEPTH_IMAGE_PROC_DEPTH_CONVERSIONS
#define DEPTH_IMAGE_PROC_DEPTH_CONVERSIONS

#include <sensor_msgs/Image.h>
#include <sensor_msgs/point_cloud2_iterator.h>
#include <image_geometry/pinhole_camera_model.h>
#include "depth_traits.h"

#include <limits>

namespace depth_proc {

typedef sensor_msgs::PointCloud2 PointCloud;

// Handles float or uint16 depths
template<typename T>
void convert(
    const sensor_msgs::ImageConstPtr& depth_msg,
    PointCloud::Ptr& cloud_msg,
    const image_geometry::PinholeCameraModel& model,
    double range_max = 0.0)
{
  // Use correct principal point from calibration
  float center_x = model.cx();//内参矩阵中的图像中心的横坐标u0
  float center_y = model.cy();//内参矩阵中的图像中心的纵坐标v0

  // Combine unit conversion (if necessary) with scaling by focal length for computing (X,Y)
  double unit_scaling = DepthTraits<T>::toMeters( T(1) );//如果深度数据是毫米单位的,结果将会为0.001;如果深度数据是米单位的,结果将会为1;
  float constant_x = unit_scaling / model.fx();//内参矩阵中的 f/dx
  float constant_y = unit_scaling / model.fy();//内参矩阵中的 f/dy
  float bad_point = std::numeric_limits<float>::quiet_NaN();

  sensor_msgs::PointCloud2Iterator<float> iter_x(*cloud_msg, "x");
  sensor_msgs::PointCloud2Iterator<float> iter_y(*cloud_msg, "y");
  sensor_msgs::PointCloud2Iterator<float> iter_z(*cloud_msg, "z");
  const T* depth_row = reinterpret_cast<const T*>(&depth_msg->data[0]);
  int row_step = depth_msg->step / sizeof(T);
  for (int v = 0; v < (int)cloud_msg->height; ++v, depth_row += row_step)
  {
    for (int u = 0; u < (int)cloud_msg->width; ++u, ++iter_x, ++iter_y, ++iter_z)
    {
      T depth = depth_row[u];

      // Missing points denoted by NaNs
      if (!DepthTraits<T>::valid(depth))
      {
        if (range_max != 0.0)
        {
          depth = DepthTraits<T>::fromMeters(range_max);
        }
        else
        {
          *iter_x = *iter_y = *iter_z = bad_point;
          continue;
        }
      }

      // Fill in XYZ
      *iter_x = (u - center_x) * depth * constant_x;//这句话计算的原理是什么,通过内外参数矩阵可以计算
      *iter_y = (v - center_y) * depth * constant_y;//这句话计算的原理是什么,通过内外参数矩阵可以计算
      *iter_z = DepthTraits<T>::toMeters(depth);
    }
  }
}

} // namespace depth_image_proc

#endif

 

深度图转点云的原理

原文:http://www.cnblogs.com/cv-pr/p/5719350.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!