首页 > 其他 > 详细

兰州大学2005年数学分析考研试题参考解答

时间:2014-05-07 20:39:06      阅读:449      评论:0      收藏:0      [点我收藏+]

1(10bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 )判断下列命题是否正确.

(1) 设数列 {xbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 满足: ? pN, limbubuko.com,布布扣nbubuko.com,布布扣(xbubuko.com,布布扣n+pbubuko.com,布布扣?xbubuko.com,布布扣nbubuko.com,布布扣)=0bubuko.com,布布扣 . 则 {xbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 收敛.

解答: 错! 比如对 xbubuko.com,布布扣nbubuko.com,布布扣=bubuko.com,布布扣nbubuko.com,布布扣i=1bubuko.com,布布扣1bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

limbubuko.com,布布扣nbubuko.com,布布扣(xbubuko.com,布布扣n+pbubuko.com,布布扣?xbubuko.com,布布扣nbubuko.com,布布扣)=limbubuko.com,布布扣nbubuko.com,布布扣(1bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣+?+1bubuko.com,布布扣n+pbubuko.com,布布扣bubuko.com,布布扣)=0, ? pN.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
{xbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 发散.

(2) 设 f(x)bubuko.com,布布扣 [a,b]bubuko.com,布布扣 Riemannbubuko.com,布布扣 可积, 则 f(x)bubuko.com,布布扣 [a,b]bubuko.com,布布扣 上一定有原函数.

解答: 错! 因为任一仅具有有限多个跳跃间断点的函数 fbubuko.com,布布扣 均是 Riemannbubuko.com,布布扣 可积的, 但 fbubuko.com,布布扣 没有原函数. 这是 Darbouxbubuko.com,布布扣 告诉我们的, 他说任一导函数最多只能有第二类间断点.

(3) f(x)bubuko.com,布布扣 [a,b]bubuko.com,布布扣 上可导, 则 fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣 [a,b]bubuko.com,布布扣 上一定 Riemannbubuko.com,布布扣 可积.

解答: 错! 比如对于函数

f(x)=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣xbubuko.com,布布扣αbubuko.com,布布扣sinπbubuko.com,布布扣xbubuko.com,布布扣βbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,bubuko.com,布布扣0,bubuko.com,布布扣bubuko.com,布布扣x(0,1],bubuko.com,布布扣x=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
其中 1<α<β+1, β/αNbubuko.com,布布扣 . 容易知道 (a) f(x)bubuko.com,布布扣 [0,1]bubuko.com,布布扣 上处处可导, 且导函数为
fbubuko.com,布布扣bubuko.com,布布扣(x)=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣αxbubuko.com,布布扣α?1bubuko.com,布布扣sinπbubuko.com,布布扣xbubuko.com,布布扣βbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?βπxbubuko.com,布布扣α?β?1bubuko.com,布布扣cosπbubuko.com,布布扣xbubuko.com,布布扣βbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,bubuko.com,布布扣0,bubuko.com,布布扣bubuko.com,布布扣x0,bubuko.com,布布扣x=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(b) fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣 [0,1]bubuko.com,布布扣 上不 Riemannbubuko.com,布布扣 可积. 事实上, fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣 是无界的:

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣bubuko.com,布布扣(1bubuko.com,布布扣nbubuko.com,布布扣1/αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣βπnbubuko.com,布布扣β+1?αbubuko.com,布布扣αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣, as n.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

注记:  由 (2) 与 (3), 我们知道一个函数具有原函数与它是否可积是没有必然联系的.  

(4) 若二元函数 f(x,y)bubuko.com,布布扣 在点 (xbubuko.com,布布扣0bubuko.com,布布扣,ybubuko.com,布布扣0bubuko.com,布布扣)bubuko.com,布布扣 处可微, 则 f(x,y)bubuko.com,布布扣 (xbubuko.com,布布扣0bubuko.com,布布扣,ybubuko.com,布布扣0bubuko.com,布布扣)bubuko.com,布布扣 处的所有方向导数都存在.

解答: 对! 按定义,

?bubuko.com,布布扣vbubuko.com,布布扣f=v??f=df(v), ? vRbubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(5) 积分 bubuko.com,布布扣bubuko.com,布布扣abubuko.com,布布扣f(x)dxbubuko.com,布布扣 收敛, g(x)bubuko.com,布布扣 [a,)bubuko.com,布布扣 上单调有界, 则 bubuko.com,布布扣bubuko.com,布布扣abubuko.com,布布扣f(x)g(x)dxbubuko.com,布布扣 收敛.

解答: 对! 这就是著名的 Abelbubuko.com,布布扣 判别法, 可通过积分第二中值定理获得.

 

2 (5×10bubuko.com,布布扣bubuko.com,布布扣=50bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 )计算下列各题.

(1)limbubuko.com,布布扣nbubuko.com,布布扣(1bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+1bubuko.com,布布扣bubuko.com,布布扣+2bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+2bubuko.com,布布扣bubuko.com,布布扣+?+nbubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣 .

解答: 由

1bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣ibubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣ibubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+ibubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣2bubuko.com,布布扣+n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
知原极限 =1/2bubuko.com,布布扣 .

(2)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣lnxdxbubuko.com,布布扣 .

解答:

bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣lnxdx=[xlnx?x]|bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣=?1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(3)求级数 bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣(?1)bubuko.com,布布扣nbubuko.com,布布扣2n+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣2nbubuko.com,布布扣bubuko.com,布布扣 的收敛域与和函数.

解答: 由 limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(?1)bubuko.com,布布扣nbubuko.com,布布扣2n+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣=1bubuko.com,布布扣 知原级数的收敛域为 (?1,1)bubuko.com,布布扣 . 现求级数之和:

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣(?1)bubuko.com,布布扣nbubuko.com,布布扣2n+1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣2nbubuko.com,布布扣=2bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣(?xbubuko.com,布布扣2bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣+bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣(?xbubuko.com,布布扣2bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=2??xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1+xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣?xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣1?tbubuko.com,布布扣bubuko.com,布布扣dtbubuko.com,布布扣?2xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1+xbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?ln(1+xbubuko.com,布布扣2bubuko.com,布布扣).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(4)计算线积分 I=bubuko.com,布布扣Cbubuko.com,布布扣xdy?ydxbubuko.com,布布扣3xbubuko.com,布布扣2bubuko.com,布布扣+4ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 , 其中 Cbubuko.com,布布扣 为椭圆 2xbubuko.com,布布扣2bubuko.com,布布扣+3ybubuko.com,布布扣2bubuko.com,布布扣=1bubuko.com,布布扣 , 沿逆时针方向.

解答:

Ibubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣3xbubuko.com,布布扣2bubuko.com,布布扣+4ybubuko.com,布布扣2bubuko.com,布布扣=εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣xdy?ydxbubuko.com,布布扣3xbubuko.com,布布扣2bubuko.com,布布扣+4ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣2πbubuko.com,布布扣0bubuko.com,布布扣1bubuko.com,布布扣23bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dθ=3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣π.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(5)求 ?bubuko.com,布布扣Σbubuko.com,布布扣xdydz+ydzdx+zdxdybubuko.com,布布扣 , 其中 Σbubuko.com,布布扣 yozbubuko.com,布布扣 平面中曲线 y=zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 ybubuko.com,布布扣 轴所生成的旋转曲面在 0y1bubuko.com,布布扣 的部分, 取外侧.

解答:

原曲面积分bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣3?bubuko.com,布布扣int Σ{y1}bubuko.com,布布扣dxdydz??bubuko.com,布布扣xbubuko.com,布布扣2bubuko.com,布布扣+zbubuko.com,布布扣2bubuko.com,布布扣1bubuko.com,布布扣dzdxbubuko.com,布布扣3?bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣πydy?π=πbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

3 (15bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ) 叙述函数列 {fbubuko.com,布布扣nbubuko.com,布布扣(x)}bubuko.com,布布扣 不一致收敛到函数 f(x)bubuko.com,布布扣 的分析定义, 并用定义证明 fbubuko.com,布布扣nbubuko.com,布布扣(x)=xbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 [0,1]bubuko.com,布布扣 上不一致收敛.

证明:

(1) fbubuko.com,布布扣nbubuko.com,布布扣(x)??f(x)bubuko.com,布布扣 等价于

? εbubuko.com,布布扣0bubuko.com,布布扣>0, ? nN, ? xbubuko.com,布布扣nbubuko.com,布布扣, s.t. |fbubuko.com,布布扣nbubuko.com,布布扣(xbubuko.com,布布扣nbubuko.com,布布扣)?f(xbubuko.com,布布扣nbubuko.com,布布扣)|εbubuko.com,布布扣0bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2)fbubuko.com,布布扣nbubuko.com,布布扣(x)=xbubuko.com,布布扣nbubuko.com,布布扣??f(x){0,bubuko.com,布布扣1,bubuko.com,布布扣bubuko.com,布布扣0x<1bubuko.com,布布扣x=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 [0,1]bubuko.com,布布扣 上. 事实上,

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣nbubuko.com,布布扣(1?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)?f(1?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=(1?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣ebubuko.com,布布扣?1bubuko.com,布布扣, as n.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

4 (15bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ) 设 f(x)bubuko.com,布布扣 [a,)bubuko.com,布布扣 上一致收敛, φ(x)bubuko.com,布布扣 [a,)bubuko.com,布布扣 上连续, limbubuko.com,布布扣xbubuko.com,布布扣[f(x)?φ(x)]=0bubuko.com,布布扣 . 证明: φ(x)bubuko.com,布布扣 [a,)bubuko.com,布布扣 上一致收敛.

证明: 由 limbubuko.com,布布扣xbubuko.com,布布扣[f(x)?φ(x)]=0bubuko.com,布布扣

? ε>0,? X>a+1, s.t. xX?|f(x)?φ(x)|<εbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
fbubuko.com,布布扣 [X,)bubuko.com,布布扣 上一致连续,
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣? δbubuko.com,布布扣1bubuko.com,布布扣>0, s.t. xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣[X,): bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣?xbubuko.com,布布扣′′bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<δ?bubuko.com,布布扣bubuko.com,布布扣f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣6bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣φ(xbubuko.com,布布扣bubuko.com,布布扣)?φ(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣φ(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣f(xbubuko.com,布布扣′′bubuko.com,布布扣)?φ(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
φbubuko.com,布布扣 [a,X]bubuko.com,布布扣 上连续, 而一致连续:
? δbubuko.com,布布扣2bubuko.com,布布扣>0, s.t. xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣[a,X]: bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣?xbubuko.com,布布扣′′bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<δbubuko.com,布布扣2bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣φ(xbubuko.com,布布扣bubuko.com,布布扣)?φ(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<εbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
若取 δ=min{1,δbubuko.com,布布扣1bubuko.com,布布扣,δbubuko.com,布布扣2bubuko.com,布布扣}>0bubuko.com,布布扣 , 则
xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣[a,): bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣?xbubuko.com,布布扣′′bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣<δ?bubuko.com,布布扣bubuko.com,布布扣φ(xbubuko.com,布布扣bubuko.com,布布扣)?φ(xbubuko.com,布布扣′′bubuko.com,布布扣)bubuko.com,布布扣bubuko.com,布布扣<ε.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

5 (15bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ) 设平面 x+y+z=3bubuko.com,布布扣 截三轴于 A,B,Cbubuko.com,布布扣 三点, Obubuko.com,布布扣 为坐标原点, P(x,y,z)bubuko.com,布布扣 为三角形 ABCbubuko.com,布布扣 上一点, 以 OPbubuko.com,布布扣 为对角线, 三坐标轴为三面作一长方体. 试求其最大体积.

解答: 所求体积

V=x?y?(3?x?y)1,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
且等号成立当且仅当 Pbubuko.com,布布扣 (1,1,1)bubuko.com,布布扣 时.

 

6 (15bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 )设 f(x)bubuko.com,布布扣 [a,b]bubuko.com,布布扣 上的连续可导函数. 记 fbubuko.com,布布扣?1bubuko.com,布布扣(0)={x[a,b]; f(0)=0}bubuko.com,布布扣 . 假设 fbubuko.com,布布扣?1bubuko.com,布布扣(0)?bubuko.com,布布扣 , 且对 xfbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣 , 成立 fbubuko.com,布布扣bubuko.com,布布扣(x)0bubuko.com,布布扣 . 证明:

(1) fbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣 是有限集.

(2)fbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣 中使 fbubuko.com,布布扣bubuko.com,布布扣(x)>0bubuko.com,布布扣 的点点个数和使 fbubuko.com,布布扣bubuko.com,布布扣(x)<0bubuko.com,布布扣 的点的个数最多相差 1bubuko.com,布布扣 , 即成立

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣xfbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣sgn fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

证明:

(1)用反证法. 若 fbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣 无限, 则 Weierstrassbubuko.com,布布扣 告诉我们

? xbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣?1bubuko.com,布布扣(0): xbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣mbubuko.com,布布扣 (nm), xbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣[a,b].bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
于是
f(xbubuko.com,布布扣0bubuko.com,布布扣)=0, fbubuko.com,布布扣bubuko.com,布布扣(xbubuko.com,布布扣0bubuko.com,布布扣)=limbubuko.com,布布扣nbubuko.com,布布扣f(xbubuko.com,布布扣nbubuko.com,布布扣)?f(xbubuko.com,布布扣0bubuko.com,布布扣)bubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣?xbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
这与假设矛盾, 故有结论.

(2)由 (1), 不妨设

fbubuko.com,布布扣?1bubuko.com,布布扣(0)={xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣mbubuko.com,布布扣},bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
其中 xbubuko.com,布布扣ibubuko.com,布布扣<xbubuko.com,布布扣i+1bubuko.com,布布扣, i=1,2,?,m?1bubuko.com,布布扣 . 易知 fbubuko.com,布布扣bubuko.com,布布扣(xbubuko.com,布布扣ibubuko.com,布布扣)?fbubuko.com,布布扣bubuko.com,布布扣(xbubuko.com,布布扣i+1bubuko.com,布布扣)<0bubuko.com,布布扣 (否则由连续函数的介值定理知 (xbubuko.com,布布扣ibubuko.com,布布扣,xbubuko.com,布布扣i+1bubuko.com,布布扣)bubuko.com,布布扣 内仍有 fbubuko.com,布布扣 之零点). 于是当 ibubuko.com,布布扣 1bubuko.com,布布扣 mbubuko.com,布布扣 时, sgn\ f‘(x_i)sgn fbubuko.com,布布扣bubuko.com,布布扣(xbubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣 交替为 11bubuko.com,布布扣 -1?1bubuko.com,布布扣 , 即有 \bex \sev{\sum_{x\in f^{-1}(0)}sgn\ f‘(x)}\leq 1. \eex
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣xfbubuko.com,布布扣?1bubuko.com,布布扣(0)bubuko.com,布布扣sgn fbubuko.com,布布扣bubuko.com,布布扣(x)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

7 (30‘30bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 )

(1)解常微分方程 y\rd x+(x^2y-x)\rd y=0ydx+(xbubuko.com,布布扣2bubuko.com,布布扣y?x)dy=0bubuko.com,布布扣 .

(2)一致函数 y(x)y(x)bubuko.com,布布扣 二次可导且满足 \bex y(x)=e^{2x}+\int_0^x (x-t)y(t)\rd t. \eex

y(x)=ebubuko.com,布布扣2xbubuko.com,布布扣+bubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣(x?t)y(t)dt.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
y(x)y(x)bubuko.com,布布扣 .

解答:

(1) \bex y\rd x-x\rd y+x^y\rd y=0, \eex

ydx?xdy+xbubuko.com,布布扣ybubuko.com,布布扣dy=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bex -y\rd \frac{1}{x}-\frac{1}{x}\rd y +y\rd y=0, \eex
?yd1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣dy+ydy=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bex -\rd \frac{y}{x} +\rd \frac{y^2}{2} =0, \eex
?dybubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣+dybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣=0,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bex -\frac{y}{x}+\frac{y^2}{2}=C. \eex
?ybubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣+ybubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣=C.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2) \bex \left\{\ba{ll} y(x)=e^{2x}+\int_0^x(x-t)y(t)\rd t,&y(0)=1;\\ y‘(x)=2e^{2x}+\int_0^xy(t)\rd t,&y‘(0)=2; \ea\right. \eex

?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣y(x)=ebubuko.com,布布扣2xbubuko.com,布布扣+bubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣(x?t)y(t)dt,bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣(x)=2ebubuko.com,布布扣2xbubuko.com,布布扣+bubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣y(t)dt,bubuko.com,布布扣bubuko.com,布布扣y(0)=1;bubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣(0)=2;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\bee\label{lz05sf_7:eq} y‘‘(x)=4e^{2x}+y(x). \eee

(a) y‘‘(x)=y(x) 的通解为 \bex y(x)=c_1e^x+c_2e^{-x}; \eex

(b)y‘‘(x)=4e^{2x}+y(x) 的一特解为 \bex y(x)=\frac{4}{3}e^{2x}; \eex

\eqref{lz05sf_7:eq} 的通解为 \bex y(x)=c_1e^x+c_2e^{-x}+\frac{4}{3}e^{2x}. \eex
又由 y(0)=1 , y‘(0)=2 \bex y(x)=-\frac{1}{2}e^x +\frac{1}{6}e^{-x} +\frac{4}{3}e^{2x}. \eex
 

兰州大学2005年数学分析考研试题参考解答,布布扣,bubuko.com

兰州大学2005年数学分析考研试题参考解答

原文:http://www.cnblogs.com/zhangzujin/p/3714191.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!