来自《算法竞赛入门经典-训练指南》 刘汝佳/陈峰 清华大学出版社
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const double eps = 1e-8; int dcmp(double x) //三态函数 处理与double零有关的精度问题 { if(fabs(x) < eps) return 0; return x<0 ? -1 : 1; } #define Vector Point //向量使用点作为表示方法 结构相同 为了代码清晰定义宏加以区别 struct Point//点 向量 { double x,y; Point(double x=0,double y=0):x(x),y(y) {} }; //向量运算 Vector operator + (Vector A, Vector B) {return Vector(A.x+B.x , A.y+B.y);} Vector operator - (Vector A, Vector B) {return Vector(A.x-B.x , A.y-B.y);} Vector operator * (Vector A, double p) {return Vector(A.x*p , A.y*p);} Vector operator / (Vector A, double p) {return Vector(A.x/p , A.y/p);} bool operator == (const Vector& A, const Vector& B) {return dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0;} double Dis(Point A, Point B)//两点距离 { return sqrt((A.x - B.x)*(A.x - B.x) + (A.y - B.y)*(A.y - B.y)); } double Dot(Vector A, Vector B){//向量点积 return A.x * B.x + A.y * B.y; } double Length(Vector A){//向量长度 return sqrt(Dot(A,A)); } double Angle(Vector A, Vector B){ //向量夹角 return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B){ //向量叉积 return A.x * B.y - A.y * B.x; } double Area2(Point A, Point B, Point C){ // 三角形有向面积两倍 return Cross(B-A,C-A); } Vector Rotate(Vector A, double rad){//向量旋转 rad为弧度 return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad)); } Vector Normal(Vector A){ //单位法线 (左转90度后的单位向量) //调用需确定A为非零向量 double L = Length(A); return Vector(-A.y/L , A.x/L); } //直线向量参数方程 P+tv P为点,v为单位向量 (v长度无用) Point GetLineIntersection(Point P, Vector v, Point Q, Vector w)//获取直线交点 { //调用应保证P,Q有交点 : 即 Cross(v,w)!=0 Vector u = P-Q; double t = Cross(w,u) / Cross(v,w); return P+v*t; } //点到直线距离 使用叉积 即平行四边形的面积除以底 double DisToLine(Point P, Point A, Point B){ Vector v1 = B - A, v2 = P - A; return fabs(Cross(v1,v2)) / Length(v1); //不取绝对值是有向距离 } // 直线 struct Line_v //vector form { //P+t*v; v长度无关 Point P; Vector v; Line_v(Point A,Point B) { v = B-A; P = A; } }; struct Line_n //normal form { //ax+by+c=0 double a,b,c; Line_n(Point x,Point y) { a = y.y - x.y; b = x.x - y.x; c = x.x * y.x - x.x * y.y; } }; double PolygonArea(Point *p, int n)//多边形有向面积 支持非凸多边形 { double area = 0; for(int i=1; i<n-1; i++) area+=Cross(p[i]-p[0],p[i+1]-p[0]); return area/2; } int main() { return 0; }
原文:http://blog.csdn.net/lytning/article/details/25240465