Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2343 | Accepted: 981 |
Description
Input
Output
Sample Input
10.0 10.0 Colder 10.0 0.0 Hotter 0.0 0.0 Colder 10.0 10.0 Hotter
Sample Output
50.00 37.50 12.50 0.00
假如出现“same”,以后的答案都为0,因为目标在一条线上,而题目要求的是面积。
否则根据Colder,Hotter判断在哪边,半平面加边每一次求半平面
代码:
/* *********************************************** Author :_rabbit Created Time :2014/5/4 15:03:55 File Name :20.cpp ************************************************ */ #pragma comment(linker, "/STACK:102400000,102400000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define INF 10000000 #define eps 1e-8 #define pi acos(-1.0) typedef long long ll; int dcmp(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } struct Point{ double x,y; Point(double _x=0,double _y=0){ x=_x;y=_y; } }; Point operator + (const Point &a,const Point &b){ return Point(a.x+b.x,a.y+b.y); } Point operator - (const Point &a,const Point &b){ return Point(a.x-b.x,a.y-b.y); } Point operator * (const Point &a,const double &p){ return Point(a.x*p,a.y*p); } Point operator / (const Point &a,const double &p){ return Point(a.x/p,a.y/p); } bool operator < (const Point &a,const Point &b){ return a.x<b.x||(a.x==b.x&&a.y<b.y); } bool operator == (const Point &a,const Point &b){ return dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0; } double Dot(Point a,Point b){ return a.x*b.x+a.y*b.y; } double Length(Point a){ return sqrt(Dot(a,a)); } double Angle(Point a,Point b){ return acos(Dot(a,b)/Length(a)/Length(b)); } double angle(Point a){ return atan2(a.y,a.x); } double Cross(Point a,Point b){ return a.x*b.y-a.y*b.x; } Point vecunit(Point a){ return a/Length(a); } Point Normal(Point a){ return Point(-a.y,a.x)/Length(a); } Point Rotate(Point a,double rad){ return Point(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } double Area2(Point a,Point b,Point c){ return Length(Cross(b-a,c-a)); } struct Line{ Point p,v; double ang; Line(){}; Line(Point p,Point v):p(p),v(v){ ang=atan2(v.y,v.x); } bool operator < (const Line &L) const { return ang<L.ang; } }; bool OnLeft(const Line &L,const Point &p){ return dcmp(Cross(L.v,p-L.p))>=0; } Point GetLineIntersection(Point p,Point v,Point q,Point w){ Point u=p-q; double t=Cross(w,u)/Cross(v,w); return p+v*t; } Point GetLineIntersection(Line a,Line b){ return GetLineIntersection(a.p,a.v,b.p,b.v); } vector<Point> HPI(vector<Line> L){ int n=L.size(); sort(L.begin(),L.end());//将所有半平面按照极角排序。 /*for(int i=0;i<n;i++){ cout<<"han "<<i<<" "; printf("%.2lf %.2lf %.2lf %.2lf %.2lf\n",L[i].p.x,L[i].p.y,L[i].v.x,L[i].v.y,L[i].ang); }*/ int first,last; vector<Point> p(n); vector<Line> q(n); vector<Point> ans; q[first=last=0]=L[0]; for(int i=1;i<n;i++){ while(first<last&&!OnLeft(L[i],p[last-1]))last--;//删除顶部的半平面 while(first<last&&!OnLeft(L[i],p[first]))first++;//删除底部的半平面 q[++last]=L[i];//将当前的半平面假如双端队列顶部。 if(fabs(Cross(q[last].v,q[last-1].v))<eps){//对于极角相同的,选择性保留一个。 last--; if(OnLeft(q[last],L[i].p))q[last]=L[i]; } if(first<last)p[last-1]=GetLineIntersection(q[last-1],q[last]);//计算队列顶部半平面交点。 } while(first<last&&!OnLeft(q[first],p[last-1]))last--;//删除队列顶部的无用半平面。 if(last-first<=1)return ans;//半平面退化 p[last]=GetLineIntersection(q[last],q[first]);//计算队列顶部与首部的交点。 for(int i=first;i<=last;i++)ans.push_back(p[i]);//将队列中的点复制。 return ans; } double PolyArea(vector<Point> p){ int n=p.size(); double ans=0; for(int i=1;i<n-1;i++) ans+=Cross(p[i]-p[0],p[i+1]-p[0]); return fabs(ans)/2; } Point pp[200]; int main() { //freopen("data.in","r",stdin); //freopen("data.out","w",stdout); Point a,b; vector<Line> L; Line s; a=Point(0,0);b=Point(10,0);s=Line(a,b-a);L.push_back(s); a=Point(10,0);b=Point(10,10);s=Line(a,b-a);L.push_back(s); a=Point(10,10);b=Point(0,10);s=Line(a,b-a);L.push_back(s); a=Point(0,10);b=Point(0,0);s=Line(a,b-a);L.push_back(s); Point pre,cur; char str[100]; int flag=0; while(~scanf("%lf%lf%s",&cur.x,&cur.y,str)){ if(flag)puts("0.00"); else{ if(str[0]==‘S‘){ flag=1; puts("0.00"); } else{ a=(pre+cur)/2; b=Normal(cur-pre); if(str[0]==‘C‘)L.push_back(Line(a,b)); if(str[0]==‘H‘)L.push_back(Line(a,Point(-b.x,-b.y))); vector<Point> ans=HPI(L); printf("%.2f\n",PolyArea(ans)); pre=cur; } } } return 0; }
POJ 2540 半平面交求可行区域面积,布布扣,bubuko.com
原文:http://blog.csdn.net/xianxingwuguan1/article/details/25227323