[BZOJ3771]Triple
试题描述
输入
输出
输入示例
4 4 5 6 7
输出示例
4 1 5 1 6 1 7 1 9 1 10 1 11 2 12 1 13 1 15 1 16 1 17 1 18 1
数据规模及约定
所有数据满足:Ai<=40000
题解
这题用了一个叫母函数的东西。其实就是搞一个多项式 A,其中第 xi 的系数为数字 i 的出现次数,那么容易发现两个 A 相乘可以得到两个数加和组成的每一个数不考虑顺序和重复的方法,具体来说设两个数加起来和为 n 的方案为 Bn ,数 n 的出现次数为 An 则有,容易发现这是个卷积的形式,所以是两个多项式 A 相乘。注意需要排除重复和顺序不当的情况,所以还需要设置一个多项式 A2,其中第 xi 表示 i/2 的出现次数,那么 (A*A-A2)/2 就是两个数加起来考虑顺序和重复的方案数了。同理三个数的也可以自己yy一下推出来。
#include <iostream> #include <cstdio> #include <algorithm> #include <cmath> #include <stack> #include <vector> #include <queue> #include <cstring> #include <string> #include <map> #include <set> using namespace std; const int BufferSize = 1 << 16; char buffer[BufferSize], *Head, *Tail; inline char Getchar() { if(Head == Tail) { int l = fread(buffer, 1, BufferSize, stdin); Tail = (Head = buffer) + l; } return *Head++; } int read() { int x = 0, f = 1; char c = Getchar(); while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = Getchar(); } while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = Getchar(); } return x * f; } #define maxn 240010 #define LL long long const double pi = acos(-1.0); struct Complex { double a, b; Complex() { a = b = 0.0; } Complex operator + (const Complex& t) const { Complex ans; ans.a = a + t.a; ans.b = b + t.b; return ans; } Complex operator += (const Complex& t) { *this = *this + t; return *this; } Complex operator - (const Complex& t) const { Complex ans; ans.a = a - t.a; ans.b = b - t.b; return ans; } Complex operator * (const Complex& t) const { Complex ans; ans.a = a * t.a - b * t.b; ans.b = a * t.b + b * t.a; return ans; } Complex operator * (const double& t) const { Complex ans; ans.a = a * t; ans.b = b * t; return ans; } Complex operator *= (const Complex& t) { *this = *this * t; return *this; } } A[maxn], A2[maxn], A3[maxn], ans[maxn]; int n, m; int Ord[maxn]; void FFT(Complex a[], int n, int tp) { for(int i = 0; i < n; i++) if(i < Ord[i]) swap(a[i], a[Ord[i]]); for(int i = 1; i < n; i <<= 1) { Complex w, wn; wn.a = cos(pi / i); wn.b = sin(pi / i) * tp; for(int j = 0; j < n; j += (i << 1)) { w.a = 1.0; w.b = 0.0; for(int k = 0; k < i; k++) { Complex t1 = a[j+k], t2 = w * a[j+k+i]; a[j+k] = t1 + t2; a[j+k+i] = t1 - t2; w *= wn; } } } if(tp < 0) for(int i = 0; i <= n; i++) a[i].a = (int)(a[i].a / n + .5); return ; } int main() { int t = read(); for(int i = 1; i <= t; i++) { int x = read(); A[x].a += 1.0; A2[x<<1].a += 1.0; A3[x*3].a += 1.0; n = max(n, x); } m = n * 3; int L = 0; for(n = 1; n <= m; n <<= 1) L++; for(int i = 0; i < n; i++) Ord[i] = (Ord[i>>1] >> 1) | ((i & 1) << L - 1); FFT(A, n, 1); FFT(A2, n, 1); FFT(A3, n, 1); for(int i = 0; i <= n; i++) ans[i] = A[i] + (A[i] * A[i] - A2[i]) * .5 + (A[i] * A[i] * A[i] - A[i] * A2[i] * 3.0 + A3[i] * 2.0) * (1.0 / 6.0); FFT(ans, n, -1); for(int i = 1; i <= m; i++) if((int)ans[i].a) printf("%d %d\n", i, (int)ans[i].a); return 0; }
原文:http://www.cnblogs.com/xiao-ju-ruo-xjr/p/5739987.html