首页 > 其他 > 详细

ACM算法集锦

时间:2014-05-10 00:29:33      阅读:625      评论:0      收藏:0      [点我收藏+]

kurXX最小生成树

#include <iostream>

#include <math.h>

#include <algorithm>

using namespace std;

#define M 501

#define LIM 20000000

struct edg{

         int u,v;

         int w;

}all_e[M*M/2];

bool operator < (const edg &a,const edg &b){

         return a.w<b.w;

}

int set[M];

inline bool uni(int set[],int a,int b){

         int ac=0,a2=a,b2=b,bc=0;

         while(set[a]!=0) {a=set[a];ac++;}

         if(a2!=a) set[a2]=a;

         while(set[b]!=0) {b=set[b];bc++;}

         if(b2!=b) set[b2]=b; 

         if(a==b) return false;

         if(ac<bc) set[a]=b;

         else set[b]=a;

         return true;

}

int main(){

         int i,j,k,n,m,u,v,t;

         cin >> t;

         for(k=0;k<t;k++){

         memset(set,0,sizeof(set));

         cin >> n;

         int ei=0;

         for(i=1;i<=n;i++){

                   for(j=1;j<=n;j++){

                            if(t!=0){

                                     edg e;

                                     e.u=i;e.v=j;

                                     scanf("%d",&e.w);

                                     if(i<j)

                                               all_e[ei++]=e;

                            }

                   }

         }

         sort(&all_e[0],&all_e[ei]);

         int count=0;

         int size=ei;

         int max=0;

         for(i=0;i<size && count < n-1;i++){

                   if(uni(set,all_e[i].u,all_e[i].v)){

                            count++;

                            if(all_e[i].w>all_e[max].w) max=i;

                   }

         }

         printf("%d\n",all_e[max].w);

         }

         return 0;

}

Prim

#include <iostream>

using namespace std;

#define M 2001

int set[M]={0},g[M][M];

char str[M][8];

inline void make_map(int n,int g[M][M]){

         int i,j,k;

         for(i=1;i<=n;i++){

                   for(j=i+1;j<=n;j++){

                            int c=0;

                            for(k=0;k<7;k++)

                                     if(str[i][k]!=str[j][k]) c++;

                            g[i][j]=g[j][i]=c;

                   }

         }

}

 

int main(){

         int n,q[M],qf=0,ql=0,d[M],u;

         char c;

         scanf("%d%c",&n,&c);

         int i;

         while(n!=0){

                   memset(set,0,sizeof(set)); memset(g,0,sizeof(g));

                   for(i=1;i<=n;i++) {

                            scanf("%s",&str[i]);

                            q[i-1]=i;

                            d[i]=2000000;

                   }

                   qf=0;ql=n-1;

                   make_map(n,g);

                   int sum=0;

                   int f=false;

                   while(qf<=ql){

                            int min=qf;

                            for(i=qf+1;i<=ql;i++){

                                     if(d[q[i]] < d[q[min]]) min=i;

                            }

                            swap(q[qf],q[min]);

                            u=q[qf]; qf++;

                            if(f) sum+=d[u];

                            for(i=1;i<=n;i++){

                                     if(g[u][i] !=0 && g[u][i] < d[i]) d[i]=g[u][i];

                            }

                            f=true;

                   }

                   printf("The highest possible quality is 1/%d.\n",sum);

                   scanf("%d%c",&n,&c);

         }

         return 0;

}

堆实现最短路

#include <iostream>

#include <string>

#include <stdlib.h>

#include <vector>;

using namespace std;

#define M 1001

#define LIM 2000000000

 

struct dd{ //最短距离

         int w,q;//w是距离值,q是堆中的相对位置

}d[M],d2[M];

struct node{

         int v,w;

};

int h[M],hs;

vector<node> g[M],g2[M];

void change_key(dd d[M],int v,int w){

         d[v].w=w;

         int i=d[v].q;

         while(i>1 && d[h[i/2]].w>d[h[i]].w){

                   swap(h[i],h[i/2]);

                   swap(d[h[i]].q,d[h[i/2]].q);

                   i=i/2;

         }

}

inline void min_heaphy(dd d[M],int *a,int i,int s){//s 为堆大小

         int l=i*2,r=i*2+1;

         int miner=i;

         if (l<=s && d[a[i]].w>d[a[l]].w)

                   miner = l;

         else miner=i;

         if (r<=s && d[a[miner]].w>d[a[r]].w)

                   miner=r;

         if(miner!=i){

                   swap(a[i],a[miner]);

                   swap(d[a[i]].q,d[a[miner]].q);

                   min_heaphy(d,a,miner,s);

         }

}

inline void init(dd d[M],int n,int s){  //初始化图和堆

         int i;

         hs=n;

         for(i=1;i<=n;i++){d[i].w=LIM;h[i]=d[i].q=i;}

         change_key(d,s,0);

}

inline void relax(dd d[M],int u,int v,int duv){

         if(d[v].w>d[u].w+duv) change_key(d,v,d[u].w+duv);

}

void dijkstra(vector<node> g[M],dd d[M],int n,int s){ //n is |V| && s is the source

         init(d,n,s);

         int i;

         while(hs!=0){

                   int u=h[1];

                   swap(h[1],h[hs]);

                   swap(d[h[1]].q,d[h[hs]].q);

                   hs--;

                   min_heaphy(d,h,1,hs);

                   for(i=0;i<g[u].size();i++) relax(d,u,g[u][i].v,g[u][i].w);

         }

}

最短路DIJ普通版

#define M 101

#define LIM 20000000

 

int g[M][M],d[M],fd[2][M][M],gt[M][M],set[M];

inline void init(int d[M],int n,int s){  //初始化图

         int i;

         for(i=1;i<=n;i++)         d[i]=LIM;

         d[s]=0;

}

 

inline void relax(int d[M],int u,int v,int duv){

         if(d[v]>d[u]+duv)        d[v]=d[u]+duv;

}

void dijkstra(int g[M][M],int d[M],int n,int s){ //n is |V| && s is the source

         init(d,n,s);

         int q[M],ql=1,qf=1; //队列

         int i;

         for(i=1;i<=n;i++) q[ql++]=i;

         while(qf!=ql){

                   int min=qf;

                   for(i=qf;i<ql;i++) if(d[q[i]]<d[q[min]]) min=i;

                   swap(q[qf],q[min]); //q[qf] is the min

                   int u=q[qf++];

                   for(i=1;i<=n;i++){

                            if(g[u][i]!=0) relax(d,u,i,g[u][i]);

                   }

         }

}

floyd

#include <iostream>

#include <vector>

using namespace std;

#define M 301

#define LIM 200000000

int w[M][M],d[2][M][M];

 

void floyd(int g[M][M],int d[2][M][M],int n){

         int i,j,k;

         for(i=1;i<=n;i++){

                   for(j=1;j<=n;j++){

                            d[0][i][j]=g[i][j];

                   }

                   d[0][i][i]=0;

         }        //这里是令d[0]=g

         for(k=1;k<=n;k++){

                   for(i=1;i<=n;i++)

                            for(j=1;j<=n;j++){

                                     int t1=k%2; int t2=(t1+1)%2;

                                     d[t1][i][j]=d[t2][i][j] < d[t2][i][k]+d[t2][k][j]?d[t2][i][j]:d[t2][i][k]+d[t2][k][j];

                            }

         }

}

BELL_MAN

inline void init(int d[M],int n,int s){  //初始化图

         int i;

         for(i=1;i<=n;i++)         d[i]=2000000000;

         d[s]=0;

}

 

inline void relax(int d[M],int u,int v,int duv){

         if(d[v]>d[u]+duv)        d[v]=d[u]+duv;

}

 

void bell_man(int g[M][M],int d[M],int n,int s){ //n个结点 s为源点

         int i,j,k;

         init(d,n,s);

         for(k=1;k<n;k++){

                   for(i=1;i<=n;i++)

                            for(j=1;j<=n;j++){

                                     if(g[i][j]!=0) relax(d,i,j,g[i][j]);

                            }

         }

}

拓扑排序

#include <iostream>

#include <stack>

#include <vector>

#include <list>

using namespace std;

vector <int> order;

void find_id(list<int> g[],int id[],int n){  //寻找入度,没有使用

         int i;

         list<int>::iterator k;

         for(i=0;i<n;i++){

                   for(k=g[i].begin();k!=g[i].end();k++){

                            id[*k]++;

                   }

         }

}

void topo(list<int> g[],int id[],int n,bool &OK,bool &incon){//OK==false 表示未确定顺序 incon==true 表示发现矛盾

         stack<int> s;

         order.erase(order.begin(),order.end());

         int t[26];

         copy(&id[0],&id[n],&t[0]);

         int i;

         for(i=0;i<n;i++){

                   if(id[i]==0)

                            s.push(i);

         }

         if(s.size()!=1) OK=false;

         int count=0;

         while(!s.empty()){

                   int v=s.top(); s.pop(); count++;

                   order.push_back(v);

                   list<int>::iterator k;

                   for(k=g[v].begin();k!=g[v].end();k++){

                            id[*k]--;

                            if(id[*k]==0) s.push(*k);

                            if(s.size()>1) OK=false;

                   }

         }

         if(order.size() < n) OK=false;   //矛盾发生,会导致这种情况,小心

         if(count < n) incon=true;

         copy(&t[0],&t[n],&id[0]);

}

DFS强连通分支

#include <iostream>

#include <algorithm>

#include <vector>

using namespace std;

#define M 20005

vector<int> g[M],gt[M];

bool used[M];

int ft[M],sort_v[M],tim;

bool comp(const int &u,const int &v){

         return ft[u]>ft[v];

}

inline int findp(int set[],int n){

         int n2=n;

         while(set[n]!=0) n=set[n];

         if(n2!=n) set[n2]=n;

         return n;

}

inline bool uni(int set[],int a,int b){

         int ac=0,a2=a,b2=b,bc=0,t;

         while(set[a]!=0) {a=set[a];ac++;}

         while(a2!=a) {t=set[a2]; set[a2]=a; a2=t;};

         while(set[b]!=0) {b=set[b];bc++;}

         while(b2!=b) {t=set[b2]; set[b2]=b; b2=t;};

         if(a==b) return false;

         if(ac<bc) set[a]=b;

         else set[b]=a;

         return true;

}

void dfs(vector<int> g[M],int u){

         if(used[u]) return;

         tim++;

         used[u]=true;

         int i;

         for(i=0;i<g[u].size();i++){

                   dfs(g,g[u][i]);

         }

         tim++;

         ft[u]=tim;

         return;

}

void dfs2(vector<int> g[],int u,int r,int set[]){

         if(used[u]) return;

         uni(set,u,r);

         used[u]=true;

         int i;

         for(i=0;i<g[u].size();i++){

                   dfs2(g,g[u][i],u,set);

         }

         return;

}

void scc(int n,vector<int> g[M],int set[]){

         int i,j;

         tim=0;

         memset(used,0,sizeof(used));

         memset(set,0,sizeof(set));

         for(i=1;i<=n;i++) sort_v[i]=i;

         for(i=1;i<=n;i++) if(!used[i]) dfs(g,i); //compute finishing times

         sort(&sort_v[1],&sort_v[n+1],comp); //decreasing f[u] order

         memset(used,0,sizeof(used)); 

         for(i=1;i<=n;i++) for(j=0;j<g[i].size();j++) gt[g[i][j]].push_back(i); //compute gt

         for(i=1;i<=n;i++) if(!used[sort_v[i]]) dfs2(gt,sort_v[i],sort_v[i],set);  //make the scc

}

int main(){

         int i,j,n,m,u,v,set[M];

         cin >> n >> m;

         for(i=0;i<m;i++){

                   scanf("%d%d",&u,&v);

                   g[u].push_back(v);

         }

         scc(n,g,set);

         int pi=1,ptosc[M];

         struct Scc{

                   int p,n;

         }sc[M];

         memset(sc,0,sizeof(sc));

         for(i=1;i<=n;i++){

                   int p=findp(set,i);

                   if(sc[p].p==0) {sc[p].p=pi; ptosc[pi++]=p;}

                   sc[p].n++;

         }

         int n2=pi-1,od[M];

         memset(od,0,sizeof(od));

         for(i=1;i<=n;i++){

                   for(j=0;j<g[i].size();j++){

                            u=findp(set,i); v=findp(set,g[i][j]);

                            if(sc[u].p!=sc[v].p) od[sc[u].p]++;

                   }

         }

         int sum=0,s1=0;

         for(i=1;i<=n2;i++) if(od[i]==0) {s1++; sum+=sc[ptosc[i]].n;}

         if(s1!=1) sum=0;

         cout << sum << endl;

}

最大匹配

#include <iostream>

#include <string>

#include <math.h>

using namespace std;

#define M 1001

int n,m,match[M],ans[M];

bool visit[M],g[M][M];

//O(n^3)

bool dfs(int k,bool map[M][M]){ 

         int t;

         for(int i = 1; i <= m; i++){

                   if(map[k][i] && !visit[i]){

                            visit[i] = true;

                            t = match[i];

                            match[i] = k;

                            if(t == 0 || dfs(t,map))

                                     return true;

                            match[i] = t;

                   }

         }

         return false;

}

int main(){

         int i,sum=0,t,j,u,v;

         cin >> t;

         while(t--){

                   sum=0;

                   memset(match,0,sizeof(match));

                   memset(g,0,sizeof(g));

                   scanf("%d%d",&n,&m);

                   for(i=1;i<=m;i++){

                            scanf("%d%d",&u,&v);

                            g[u][v]=true;

                   }

                   m=n;

                   for(i=1;i<=n; i++){

                            memset(visit,0,sizeof(visit));

                            if(dfs(i,g))  sum++;

                   }

                   cout << n-sum << endl;

         }

         return 0;

}

还有两个最大匹配模板

#include <iostream>

#include <string>

#include <math.h>

#include <vector>

using namespace std;

#define M 3001

bool g[M][M];

int mk[M] ,cx[M],pred[M],open[M],cy[M],nx,ny;

//边少适用O(n^3)

int MaxMatchBFS()

{

    int i , u , v , t , d , e , cur , tail , res(0) ;

    memset(mk , 0xff , sizeof(mk)) ;

    memset(cx , 0xff , sizeof(cx)) ;

    memset(cy , 0xff , sizeof(cy)) ;

    for (i = 0 ; i < nx ; i++){

        pred[i] = -1 ;

                   for (open[cur = tail = 0] = i ; cur <= tail && cx[i] == -1 ; cur++){

            for (u = open[cur] , v = 0 ; v < ny && cx[i] == -1 ; v ++) if (g[u][v] && mk[v] != i)

            {

                mk[v] = i ; open[++tail] = cy[v] ; if (open[tail] >= 0) { pred[open[tail]] = u ; continue ; }

                for (d = u , e = v ; d != -1 ; t = cx[d] , cx[d] = e , cy[e] = d , e = t , d = pred[d]) ;

            }

        }

        if (cx[i] != -1) res++ ;

    }

    return res ;

}

int path(int u){

    for (int v = 0 ; v < ny ; v++)

                   if (g[u][v] && !mk[v]){

                            mk[v] = 1 ;

                            if (cy[v] == -1 || path(cy[v])) {

                                     cx[u] = v ;

                                     cy[v] = u ;

                                     return 1 ;

                            }

                   } return 0 ;

}

//少适用O(n^3)

int MaxMatchDFS()

{

    int res(0) ;

    memset(cx , 0xff , sizeof(cx)) ;

    memset(cy , 0xff , sizeof(cy)) ;

    for (int i = 0 ; i < nx ; i++)

                   if (cx[i] == -1){

                            memset(mk , 0 , sizeof(mk));

            res += path(i) ;

                   }

                   return res ;

}

最大权匹配,KM算法

//此KM算法,坐标从1开始,记住

#include <iostream>

#include <vector>

#include <math.h>

using namespace std;

#define M 110

int n;                // X 的大小

int lx[M], ly[M];        // 标号

bool sx[M], sy[M];    // 是否被搜索过

int match[M];        // Y(i) 与 X(match [i]) 匹配

// 从 X(u) 寻找增广道路,找到则返回 true

bool path(int u,int weight[M][M]) {

    sx [u] = true;

    for (int v = 0; v < n; v ++)

        if (!sy [v] && lx[u] + ly [v] == weight [u] [v]) {

            sy [v] = true;

            if (match [v] == -1 || path(match [v],weight)) {

                match [v] = u;

                return true;

            }

        }

    return false;

}

// 参数 Msum 为 true ,返回最大权匹配,否则最小权匹配

int km(bool Msum,int weight[M][M]) {

    int i, j;

    if (!Msum) {

        for (i = 0; i < n; i ++)

            for (j = 0; j < n; j ++)

                weight [i] [j] = -weight [i] [j];

    }

    // 初始化标号

    for (i = 0; i < n; i ++) {

        lx [i] = -0x1FFFFFFF;

        ly [i] = 0;

        for (j = 0; j < n; j ++)

            if (lx [i] < weight [i] [j])

                lx [i] = weight [i] [j];

    } 

    memset(match, -1, sizeof (match));

    for (int u = 0; u < n; u ++)

        while (1) {

            memset(sx, 0, sizeof (sx));

            memset(sy, 0, sizeof (sy));

            if (path(u,weight))

                break;     

            // 修改标号

            int dx = 0x7FFFFFFF;

            for (i = 0; i < n; i ++)

                if (sx [i])

                    for (j = 0; j < n; j ++)

                        if(!sy [j])

                            dx = min(lx[i] + ly [j] - weight [i] [j], dx);

            for (i = 0; i < n; i ++) {

                if (sx [i])

                    lx [i] -= dx;

                if (sy [i])

                    ly [i] += dx;

            }

        }

   

    int sum = 0;

    for (i = 0; i < n; i ++)

        sum += weight [match [i]] [i];

   

    if (!Msum) {

        sum = -sum;

        for (i = 0; i < n; i ++)

            for (j = 0; j < n; j ++)

                weight [i] [j] = -weight [i] [j];         // 如果需要保持 weight [ ] [ ] 原来的值,这里需要将其还原

    }

    return sum;

}

 

struct Point{

    int r,c;

};

int main(){

    int i,j,m;

    freopen("in","r",stdin);

    int w[M][M];

    char c; Point pt;

    while(cin >> n >> m && (n!=0 || m!=0)){

        vector<Point> vh,vm;

        for(i=0;i<n;i++){

            getchar();

            for(j=0;j<m;j++){

                scanf("%c",&c);

                if(c==‘H‘){

                    pt.r=i; pt.c=j;

                    vh.push_back(pt);

                }

                if(c==‘m‘){

                    pt.r=i;pt.c=j;

                    vm.push_back(pt);

                }

            }

        }

        for(i=0;i<vm.size();i++) for(j=0;j<vh.size();j++) w[i][j]=abs(vm[i].r-vh[j].r)+abs(vm[i].c-vh[j].c);

        n=vm.size();

        cout << km(false,w)<< endl;

    }

}

两种欧拉路

无向图:

#define M 45

int used[M][M],id[M];

void dfs(int u,vector<int> g[],vector<int> &vans){  //O(E^2)

         int j,w,v,t;

         for(j=g[u].size()-1;j>=0;j--){

                   t=v=g[u][j]; w=u;

                   if(v>w) swap(v,w);

                   if(used[v][w]!=0){

                            used[v][w]--;

                            dfs(t,g,vans);

                   }

         }

         vans.push_back(u);

}

 

有向图:

int n,m;

vector<int> g[M],vans;

void dfs(int u){   //O(E^2*log(e))

         int j,t;

         Edg et;

         for(j=g[u].size()-1;j>=0;j--){

                   et.u=u; et.v=g[u][j];

                   if(mp[et]!=0){

                            mp[et]--;

                            dfs(g[u][j]);

                   }

         }

         vans.push_back(u);

}

 

【最大流】Edmonds Karp

//求最小割集合的办法:

//设置一个集合A, 最开始A={s},按如下方法不断扩张A:

//1 若存在一条边(u,v), 其流量小于容量,且u属于A,则v加入A

//2 若存在(v,u), 其流量大于0,且u属于A,则v加入A

 

//A计算完毕,设B=V-A,

//最大流对应的割集E={(u,v) | u∈A,v∈B}

//E为割集,这是一定的

 

//【最大流】Edmonds Karp算法求最大流,复杂度 O(V E^2)。返回最大流,输入图容量

//矩阵g[M][M],取非零值表示有边,s为源点,t为汇点,f[M][M]返回流量矩阵。

 

int f[M][M],g[M][M];

 

int EdmondsKarp(int n,int s,int t){ 

         int i,j,k,c,head,tail,flow=0;

         int r[M][M];

         int prev[M],visit[M],q[M];

         for (i=1;i<=n;i++) for (j=1;j<=n;j++) {f[i][j]=0;r[i][j]=g[i][j];} //初始化流量网络和残留网络

         while (1) { //在残留网络中找到一条s到t的最短路径

                   head=tail=0;

                   memset(visit,0,sizeof(visit));

                   q[tail++]=s;

                   prev[s]=-1; visit[s]=1;

                   while(head!=tail){  //宽度优先搜索从s到t的最短路径

                            k=q[head++];

                            for (i=1;i<=n;i++)

                                     if (!visit[i] && r[k][i]>0) {

                                               visit[i]=1;

                                               prev[i]=k;

                                               if (i==t) goto next;

                                               q[tail++]=i;

                                     }

                   }

next: 

                   if (!visit[t]) break; //流量已达到最大

                   c=99999999;

                   j=t;

                   while (j!=s) {

                            i=prev[j];

                            if (c>r[i][j]) c=r[i][j];

                            j=i;

                   }

                   //下面改进流量

                   j=t;

                   while (j!=s) {

                            i=prev[j];

                            f[i][j]+=c;

                            f[j][i]=-f[i][j];

                            r[i][j]=g[i][j]-f[i][j];

                            r[j][i]=g[j][i]-f[j][i];

                            j=i;

                   }

                   flow+=c;

                   //cout << c << endl;

         }

         return flow;

}

dinic

/* dinic

BFS+多路增广

这个模板是OIBH上的Code_Rush的,他写的Dinic和别人的不太一样,速度更快

O(mn^2) */

#include<stdio.h>

#include<list>

#include<queue>

#include<string.h>

#include <vector>

#include <iostream>

using namespace std;

#define M 201

int pre[M];

int f[M][M],g[M][M];

bool b[M]={0};

//g为输入的图容量矩阵,f为返回流量矩阵

int dinic(int n,int s,int t)

{   memset(f,0,sizeof(f));

    int ans=0;

    while(true)

    {   queue<int> q;

        fill(pre,pre+n+2,-1);

        fill(b,b+n+2,0);

        q.push(s);b[s]=1;

        while(!q.empty())

        {

            int x=q.front();q.pop();

            if(x==t)break;

            for(int i=1;i<=n;i++)

                            {

                if(!b[i]&&f[x][i]<g[x][i])

                {

                    pre[i]=x;

                    b[i]=1;

                    q.push(i);

                }

                            }

        }

        if(pre[t]==-1)break;

        for(int i=1;i<=n;i++)

                   {

            if(f[i][t]<g[i][t]&&(i==s||pre[i]!=-1))

            {

                int v,low=g[i][t]-f[i][t];

                pre[t]=i;

                for(v=t;pre[v]!=-1;v=pre[v])

                    low=low<g[pre[v]][v]-f[pre[v]][v]?low:g[pre[v]][v]-f[pre[v]][v];

                if(low==0)continue;

                for(v=t;pre[v]!=-1;v=pre[v])

                {

                    f[pre[v]][v]+=low;

                    f[v][pre[v]]-=low;

                }

                ans+=low;

            }

                   }

    }

         return ans;

int main(){

         int m,n,i,j,u,v,w;

         while(cin >> m >> n){

                   memset(g,0,sizeof(g));

                   for(i=0;i<m;i++){

                            scanf("%d%d%d",&u,&v,&w);

                            g[u][v]+=w;

                   }

                   cout << dinic(n,1,n) << endl;

         }

}

【最小费用最大流】Edmonds Karp对偶算法

#define M 211

#define LIM 99999999

//【最小费用最大流】Edmonds Karp对偶算法,复杂度 O(V^3E^2)。返回最大流,输入图

//容量矩阵g[M][M],费用矩阵w[M][M],取非零值表示有边,s为源点,t为汇点,f[M][M]返

//回流量矩阵,minw返回最小费用。

int g[M][M],w[M][M],minw,f[M][M];

int DualityEdmondsKarp(int n,int s,int t){        

         int i,j,k,c,quit,flow=0;

         int best[M],prev[M];

         minw=0;

         for (i=1;i<=n;i++) {

                   for (j=1;j<=n;j++){

                            f[i][j]=0;

                            if (g[i][j]) {g[j][i]=0;w[j][i]=-w[i][j];}

                   }

         }

         while (1) {

                   for (i=1;i<=n;i++) best[i]=LIM;

                   best[s]=0;

                   do {

                            quit=1;

                            for (i=1;i<=n;i++){

                                     if (best[i]<LIM)

                                               for (j=1;j<=n;j++){

                                                        if (f[i][j]<g[i][j] && best[i]+w[i][j]<best[j]){

                                                                 best[j]=best[i]+w[i][j];

                                                                 prev[j]=i;

                                                                 quit=0;

                                                        }

                                               }

                            }

                   }while(!quit);

                   if (best[t]>=LIM) break;

                   c=LIM;

                   j=t;

                   while (j!=s) {

                            i=prev[j];

                            if (c>g[i][j]-f[i][j]) c=g[i][j]-f[i][j];

                            j=i;

                   }

                   j=t;

                   while (j!=s) {

                            i=prev[j];

                            f[i][j]+=c;

                            f[j][i]=-f[i][j];

                            j=i;

                   }

                   flow+=c; minw+=c*best[t];

         }

         return flow;

}

【题目1】N皇后问题(八皇后问题的扩展)

【题目2】排球队员站位问题

【题目3】把自然数N分解为若干个自然数之和

【题目4】把自然数N分解为若干个自然数之积

【题目5】马的遍历问题

【题目6】加法分式分解

【题目7】地图着色问题

【题目8】在n*n的正方形中放置长为2,宽为1的长条块,

【题目9】找迷宫的最短路径。(广度优先搜索算法)

【题目10】火车调度问题

【题目11】农夫过河

【题目12】七段数码管问题

【题目13】把1-8这8个数放入下图8个格中,要求相邻的格(横,竖,对角线)上填的数不连续.

【题目14】在4×4的棋盘上放置8个棋,要求每一行,每一列上只能放置2个.

【题目15】迷宫问题.求迷宫的路径.(深度优先搜索法)

【题目16】一笔画问题

【题目17】城市遍历问题.

【题目18】棋子移动问题

【题目19】求集合元素问题(1,2x+1,3X+1类)

【题目】N皇后问题(含八皇后问题的扩展,规则同八皇后):在N*N的棋盘上,放置N个皇后,要求每一横行
每一列,每一对角线上均只能放置一个皇后,问可能的方案及方案数。

const max=8;

var i,j:integer;

a:array[1..max] of 0..max;   {放皇后数组}

b:array[2..2*max] of boolean;  {/对角线标志数组}

c:array[-(max-1)..max-1] of boolean; {\对角线标志数组}

col:array[1..max] of boolean;  {列标志数组}

total:integer;        {统计总数}

procedure output; {输出}

var i:integer;

begin

     write(‘No.‘:4,‘[‘,total+1:2,‘]‘);

     for i:=1 to max do write(a[i]:3);write(‘     ‘);

     if (total+1) mod 2 =0 then  writeln;  inc(total);

end;

function  ok(i,dep:integer):boolean;  {判断第dep行第i列可放否}

begin

          ok:=false;

          if ( b[i+dep]=true) and ( c[dep-i]=true) {and (a[dep]=0)} and

                      (col[i]=true) then   ok:=true

end;

 

procedure try(dep:integer);

var i,j:integer;

begin

     for i:=1 to max do    {每一行均有max种放法}

       if  ok(i,dep) then begin

           a[dep]:=i;

           b[i+dep]:=false;  {/对角线已放标志}

           c[dep-i]:=false;  {\对角线已放标志}

           col[i]:=false;    {列已放标志}

           if dep=max then output

                      else try(dep+1); {递归下一层}

           a[dep]:=0;            {取走皇后,回溯}

           b[i+dep]:=true;   {恢复标志数组}

           c[dep-i]:=true;

           col[i]:=true;

       end;

end;

begin

     for i:=1 to max do begin a[i]:=0;col[i]:=true;end;

     for i:=2 to 2*max do b[i]:=true;

     for i:=-(max-1) to max-1 do c[i]:=true;

     total:=0;

     try(1);

     writeln(‘total:‘,total);

end.

【测试数据】

n=8 八皇后问题

 No.[ 1]  1  5      8  6  3  7  2  4      No.[ 2]  1  6  8   3  7  4  2  5

 No.[ 3]  1  7      4  6  8  2  5  3      No.[ 4]  1  7  5   8  2  4  6  3

 No.[ 5]  2  4      6  8  3  1  7  5      No.[ 6]  2  5  7   1  3  8  6  4

 No.[ 7]  2  5      7  4  1  8  6  3      No.[ 8]  2  6  1   7  4  8  3  5

 No.[ 9]  2  6      8  3  1  4  7  5      No.[10]  2  7  3   6  8  5  1  4

 No.[11]  2  7      5  8  1  4  6  3      No.[12]  2  8  6   1  3  5  7  4

 No.[13]  3  1      7  5  8  2  4  6      No.[14]  3  5  2   8  1  7  4  6

 No.[15]  3  5      2  8  6  4  7  1      No.[16]  3  5  7   1  4  2  8  6

 No.[17]  3  5      8  4  1  7  2  6      No.[18]  3  6  2   5  8  1  7  4

 No.[19]  3  6      2  7  1  4  8  5      No.[20]  3  6  2   7  5  1  8  4

 No.[21]  3  6      4  1  8  5  7  2      No.[22]  3  6  4   2  8  5  7  1

 No.[23]  3  6      8  1  4  7  5  2      No.[24]  3  6  8   1  5  7  2  4

 No.[25]  3  6      8  2  4  1  7  5      No.[26]  3  7  2   8  5  1  4  6

 No.[27]  3  7      2  8  6  4  1  5      No.[28]  3  8  4   7  1  6  2  5

 No.[29]  4  1      5  8  2  7  3  6      No.[30]  4  1  5   8  6  3  7  2

 No.[31]  4  2      5  8  6  1  3  7      No.[32]  4  2  7   3  6  8  1  5

 No.[33]  4  2      7  3  6  8  5  1      No.[34]  4  2  7   5  1  8  6  3

 No.[35]  4  2      8  5  7  1  3  6      No.[36]  4  2  8   6  1  3  5  7

 No.[37]  4  6      1  5  2  8  3  7      No.[38]  4  6  8   2  7  1  3  5

 No.[39]  4  6      8  3  1  7  5  2      No.[40]  4  7  1   8  5  2  6  3

 No.[41]  4  7      3  8  2  5  1  6      No.[42]  4  7  5   2  6  1  3  8

 No.[43]  4  7      5  3  1  6  8  2      No.[44]  4  8  1   3  6  2  7  5

 No.[45]  4  8      1  5  7  2  6  3      No.[46]  4  8  5   3  1  7  2  6

 No.[47]  5  1      4  6  8  2  7  3      No.[48]  5  1  8   4  2  7  3  6

 No.[49]  5  1      8  6  3  7  2  4      No.[50]  5  2  4   6  8  3  1  7

 No.[51]  5  2      4  7  3  8  6  1      No.[52]  5  2  6   1  7  4  8  3

 No.[53]  5  2      8  1  4  7  3  6      No.[54]  5  3  1   6  8  2  4  7

 No.[55]  5  3      1  7  2  8  6  4      No.[56]  5  3  8   4  7  1  6  2

 No.[57]  5  7      1  3  8  6  4  2      No.[58]  5  7  1   4  2  8  6  3

 No.[59]  5  7      2  4  8  1  3  6      No.[60]  5  7  2   6  3  1  4  8

 No.[61]  5  7      2  6  3  1  8  4      No.[62]  5  7  4   1  3  8  6  2

 No.[63]  5  8      4  1  3  6  2  7      No.[64]  5  8  4   1  7  2  6  3

 No.[65]  6  1      5  2  8  3  7  4      No.[66]  6  2  7   1  3  5  8  4

 No.[67]  6  2      7  1  4  8  5  3      No.[68]  6  3  1   7  5  8  2  4

 No.[69]  6  3      1  8  4  2  7  5      No.[70]  6  3  1   8  5  2  4  7

 No.[71]  6  3      5  7  1  4  2  8      No.[72]  6  3  5   8  1  4  2  7

 No.[73]  6  3      7  2  4  8  1  5      No.[74]  6  3  7   2  8  5  1  4

 No.[75]  6  3      7  4  1  8  2  5      No.[76]  6  4  1   5  8  2  7  3

 No.[77]  6  4      2  8  5  7  1  3      No.[78]  6  4  7   1  3  5  2  8

 No.[79]  6  4      7  1  8  2  5  3      No.[80]  6  8  2   4  1  7  5  3

 No.[81]  7  1      3  8  6  4  2  5      No.[82]  7  2  4   1  8  5  3  6

 No.[83]  7  2      6  3  1  4  8  5      No.[84]  7  3  1   6  8  5  2  4

 No.[85]  7  3      8  2  5  1  6  4      No.[86]  7  4  2   5  8  1  3  6

 No.[87]  7  4      2  8  6  1  3  5      No.[88]  7  5  3   1  6  8  2  4

 No.[89]  8  2      4  1  7  5  3  6      No.[90]  8  2  5   3  1  7  4  6

 No.[91]  8  3      1  6  2  5  7  4      No.[92]  8  4  1   3  6  2  7  5

total:92

对于N皇后:

┏━━━┯━━┯━━┯━━┯━━┯━━┯━━┯━━┓

┃皇后 N│ 4  │ 5  │ 6  │ 7 │ 8  │ 9  │ 10 ┃

┠───┼──┼──┼──┼──┼──┼──┼──┨

┃方案数│ 2  │ 10 │ 4  │ 40 │ 92 │352 │724 ┃

┗━━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┛

【题目】排球队员站位问题

┏━━━━━━━━┓图为排球场的平面图,其中一、二、三、四、五、六为位置编号,

┃        ┃二、三、四号位置为前排,一、六、五号位为后排。某队比赛时,

┃        ┃一、四号位放主攻手,二、五号位放二传手,三、六号位放副攻

┠──┬──┬──┨手。队员所穿球衣分别为1,2,3,4,5,6号,但每个队

┃ 四 │ 三 │ 二 ┃员的球衣都与他们的站位号不同。已知1号、6号队员不在后排,

┠──┼──┼──┨2号、3号队员不是二传手,3号、4号队员不在同一排,5号、

┃ 五 │ 六 │ 一 ┃6号队员不是副攻手。

┗━━┷━━┷━━┛ 编程求每个队员的站位情况。

【算法分析】本题可用一般的穷举法得出答案。也可用回溯法。以下为回溯解法。

【参考程序】

type sset=set of 1..6;

var   a:array[1..6]of 1..6;

      d:array[1..6]of sset;

      i:integer;

procedure output; {输出}

begin

                 if not( (a[3]in [2,3,4])= (a[4] in[2,3,4])) then

                 begin                                       { 3,4号队员不在同一排 }

                      write(‘number:‘);for i:=1 to 6 do write(i:8);writeln;

                      write(‘weizhi:‘);for i:=1 to 6 do write(a[i]:8);writeln;

                 end;

end;

 

procedure try(i:integer;s:sset); {递归过程  i:第i个人,s:哪些位置已安排人了}

var

   j,k:integer;

begin

     for j:=1 to 6 do begin    {每个人都有可能站1-6这6个位置}

             if (j in d[i]) and not(j in s) then begin

               {j不在d[i]中,则表明第i号人不能站j位. j如在s集合中,表明j位已排人了}

                a[i]:=j;                    {第 i 人可以站 j 位}

                if i<6 then try(i+1,s+[j])   {未安排妥,则继续排下去}

                         else  output;     {6个人都安排完,则输出}

              end;

       end;

end;

begin

     for i:=1 to 6 do d[i]:=[1..6]-[i];       {每个人的站位都与球衣的号码不同}

     d[1]:=d[1]-[1,5,6];

     d[6]:=d[6]-[1,5,6];     {1,6号队员不在后排}

     d[2]:=d[2]-[2,5];

     d[3]:=d[3]-[2,5];              {2,3号队员不是二传手}

     d[5]:=d[5]-[3,6];

     d[6]:=d[6]-[3,6];              {5,6号队员不是副攻手}

     try(1,[]);

end.

【题目】把自然数N分解为若干个自然数之和。

【参考答案】

                     n     │ total 
                     5     │   7

                     6     │  11

                     7     │  15

                    10     │  42

                    100    │  190569291

【参考程序】

var n:byte; num:array[0..255] of byte;   total:word;

procedure output(dep:byte);

var j:byte;

begin

     for j:=1 to dep do write(num[j]:3);writeln;    inc(total);

end;

procedure find(n,dep:byte);  {N:待分解的数,DEP:深度}

  var i,j,rest:byte;

  begin

     for i:=1 to n do            {每一位从N到1去试}

      if num[dep-1]<=i then   {保证选用的数大于前一位}

       begin

           num[dep]:=i;

           rest:=n - i;             {剩余的数进行下一次递归调用}

           if (rest>0) then begin   find(rest,dep+1);end

                         else if rest=0 then output(dep);{刚好相等则输出}

           num[dep]:=0;

       end;

  end;

 

begin  {主程序}

   writeln(‘input n:‘);readln(n);

   fillchar(num,sizeof(num),0);

   total:=0; num[0]:=0;

   find(n,1);

   writeln(‘sum=‘,total);

end.

【题目】把自然数N分解为若干个自然数之积。

【参考程序】

var  path :array[1..1000] of integer;

     total,n:integer;

procedure find(k,sum,dep:integer);       {K:}

var b,d:Integer;

begin

     if sum=n then                  {积等于N}

      begin

          write(n,‘=‘,path[1]);

          for d:=2 to dep-1 do write(‘*‘,path[d]);

          writeln;inc(total);

          exit;

      end;

    if sum>n then exit;                  {累积大于N}

    for b:= trunc(n/sum)+1 downto k do   {每一种可能都去试}

          begin

                 path[dep]:=b;

                 find(b,sum*b,dep+1);

          end;

end;

begin

readln(n); total:=0;

find(2,1,1);writeln(‘total:‘,total);

readln;

end.

【题目】马的遍历问题。在N*M的棋盘中,马只能走日字。马从位置(x,y)处出发,把

          棋盘的每一格都走一次,且只走一次。找出所有路径。

【参考程序】 {深度优先搜索法}

const n=5;m=4;

fx:array[1..8,1..2]of -2..2=((1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1),

                                    (-2,1),(-1,2));  {八个方向增量}

var

  dep,i:byte; x,y:byte;

  cont:integer;            {统计总数}

  a:array[1..n,1..m]of byte;   {记录走法数组}

procedure output; {输出,并统计总数}

var x,y:byte;

begin

    cont:=cont+1;  writeln;

    writeln(‘count=‘,cont);

    for y:=1 to n do  begin

          for x:=1 to m do write(a[y,x]:3);  writeln;

    end;     {      readln; halt;}

end;

procedure find(y,x,dep:byte);

var i,xx,yy:integer;

begin

    for i:=1 to 8 do

       begin

       xx:=x+fx[i,1];yy:=y+fx[i,2];  {加上方向增量,形成新的坐标}

          if ((xx in [1..m])and(yy in [1..n]))and(a[yy,xx]=0) then

                          {判断新坐标是否出界,是否已走过?}

            begin

              a[yy,xx]:=dep;         {走向新的坐标}

              if (dep=n*m)   then output

                                   else find(yy,xx,dep+1); {从新坐标出发,递归下一层}

              a[yy,xx]:=0     {回溯,恢复未走标志}

            end;

      end;

end;

begin

  cont:=0;

  fillchar(a,sizeof(a),0);

  dep:=1;

  writeln(‘input y,x‘);readln(y,x);

{ x:=1;y:=1;}

  if (y>n) or(x>m) then begin writeln(‘x,y error!‘);halt;end;

  a[y,x]:=1;

  find(y,x,2);

 

  if cont=0 then writeln(‘No answer!‘) else write(‘The End!‘);

  readln;

end.

【题目】加法分式分解。如:1/2=1/4+1/4.找出所有方案。

          输入:N  M        N为要分解的分数的分母

                               M为分解成多少项

【参考程序】

program fenshifenjie;

const  nums=5;

var

   t,m,dep:integer;

   n,maxold,max,j:longint;

   path:array[0..nums] of longint;

   maxok,p:boolean;

   sum,sum2:real;

procedure print;

var i:integer;

begin

            t:=t+1;

            if maxok=true then begin maxold:=path[m];maxok:=false;end;

            write (‘NO.‘,t);

            for i:=1 to m do write(‘ ‘,path[i]:4); writeln;

            if path[1]=path[m] then begin writeln(‘Ok!   total:‘,t:4);readln;halt;end;

end;

procedure input;

begin

            writeln (‘input N:‘); readln(n);

            writeln (‘input M(M<=‘,nums:1,‘):‘); readln(m);

            if (n<=0) or (m<=0) or (m>4) or (n>maxlongint)

                       then begin writeln(‘Invalid Input!‘);readln;halt;end;

end;

function sum1(ab:integer):real;

var a,b,c,d,s1,s2:real;

    i:integer;

begin

           if ab=1  then

                sum1:=1/path[1]

           else

                begin

                      a:=path[1];

                      b:=1         ;

                      c:=path[2];

                      d:=1;

                      for i:=1 to ab-1 do

                           begin

                                 s2:=(c*b+a*d);

                                 s1:=(a*c);

                                 a:=s1;

                                 b:=s2;

                                 c:=path[i+2];

                           end;

                      sum1:=s2/s1;

                 end;

end;

procedure back;

begin

            dep:=dep-1;

            if dep<=m-2 then max:=maxold;

            sum:=sum-1/path[dep];

            j:=path[dep];

end;

procedure find;

begin

   repeat

           dep:=dep+1;

           j:=path[dep-1]-1;

           p:=false;

             repeat

              j:=j+1;

              if (dep<>m) and (j<=max) then

                 if (sum+1/j) >=1/n then p:=false

                         else  begin

                                  p:=true;

                                  path[dep]:=j;

                                  sum:=sum+1/path[dep];

                                  end

                 else if j>max then back;

              if dep=m then begin

                 path[dep]:=j;

                 sum2:=sum1(m);

                 if (sum2)>1/n then p:=false;

                 if (sum2)=1/n then begin     print;

                                                       max:=j;

                                                       back;

                                                       end;

                 if (sum2<1/n) then back;

                 if (j>=max)   then back;

                 end;

      until p

   until dep=0;

end;

begin

     INPUT;

     maxok:=true;

     for t:=0 to m do  path[t]:=n;

     dep:=0; t:=0; sum:=0;

     max:=maxlongint;

     find;

     readln;

end.

【题目】地图着色问题

【参考程序1】

const lin:array[1..12,1..12] of 0..1  {区域相邻数组,1表示相邻}

      =((0,1,1,1,1,1,0,0,0,0,0,0),

          (1,0,1,0,0,1,1,1,0,0,0,0),

          (1,1,0,1,0,0,0,1,1,0,0,0),

          (1,0,1,0,1,0,1,0,1,1,0,0),

          (1,0,0,1,0,1,0,0,0,1,1,0),

          (1,1,0,0,1,0,1,0,0,0,1,0),

          (0,1,0,0,0,1,0,1,0,0,1,1),

          (0,1,1,0,0,0,1,0,1,0,0,1),

          (0,0,1,1,0,0,0,1,0,1,0,1),

          (0,0,0,1,1,0,0,0,1,0,1,1),

          (0,0,0,0,1,1,1,0,0,1,0,1),

          (0,0,0,0,0,0,1,1,1,1,1,1));

var  color:array[1..12] of byte;   {color数组放已填的颜色}

     total:integer;

function ok(dep,i:byte):boolean;  {判断选用色i是否可用}

var k:byte;                                {条件:相邻的区域颜色不能相同}

begin

  for k:=1 to dep do

      if (lin[dep,k]=1) and (i=color[k]) then begin ok:=false;exit;end;

  ok:=true;

end;

 

procedure output;     {输出}

var k:byte;

begin

  for k:=1 to 12 do write(color[k],‘ ‘);writeln;

  total:=total+1;

end;

procedure find(dep:byte); {参数dep:当前正在填的层数}

var i:byte;

begin

  for i:=1 to 4 do begin       {每个区域都可能是1-4种颜色}

   if ok(dep,i) then  begin

              color[dep]:=i;

              if dep=12 then output else find(dep+1);

              color[dep]:=0;     {恢复初始状态,以便下一次搜索}

              end;

  end;

end;

begin

 total:=0; {总数初始化}

 fillchar(color,sizeof(color),0);

 find(1);

 writeln(‘total:=‘,total);

end.

【参考程序2】

const       {lin数组:代表区域相邻情况}

 lin:array[1..12] of set of  1..12 =

           ([2,3,4,5,6],[1,3,6,7,8],[1,2,4,8,9],[1,3,5,9,10],[1,4,6,10,11],

            [1,2,5,7,11],[12,8,11,6,2],[12,9,7,2,3],[12,8,10,3,4],

            [12,9,11,4,5],[12,7,10,5,6],[7,8,9,10,11]);

color:array[1..4] of char=(‘r‘,‘y‘,‘b‘,‘g‘);

var a:array[1..12] of byte; {因有12个区域,故a数组下标为1-12}

    total:integer;

function ok(dep,i:integer):boolean; {判断第dep块区域是否可填第i种色}

var j:integer;      { j 为什么设成局部变量?}

begin

     ok:=true;

     for j:=1 to 12 do

           if (j in lin[dep]) and (a[j]=i) then ok:=false;

end;

 

procedure output; {输出过程}

 var j:integer;  { j 为什么设成局部变量?}

 begin

            inc(total);  {方案总数加1}

            write(total:4); {输出一种方案}

            for j:=1 to 12 do write(color[a[j]]:2);writeln;

end;

procedure find(dep:byte);

var i:byte; { i 为什么设成局部变量?}

begin

      for i:=1 to 4 do              {每一区域均可从4种颜色中选一}

            begin

             if ok(dep,i) then begin    {可填该色}

                a[dep]:=i;   {第dep块区域填第i种颜色}

                if (dep=12) then output  {填完12个区域}

                                 else find(dep+1); {未填完}

                 a[dep]:=0;  {取消第dep块区域已填的颜色}

                end;

            end;

end;

begin {主程序}

     fillchar(a,sizeof(a),0);  {记得要给变量赋初值!}

     total:=0;

     find(1);

     writeln(‘End.‘);

end.

【题目】在n*n的正方形中放置长为2,宽为1的长条块,问放置方案如何

【参考程序1】

const n=4;

var  k,u,v,result:integer;

     a:array[1..n,1..n]of char;

procedure printf; {输出}

  begin

    result:=result+1;          {方案总数加1}

    writeln(‘--- ‘,result,‘ ---‘);

    for v:=1 to n do   begin

          for u:=1 to n do write(a[u,v]); writeln end; writeln;

  end;

 

procedure try;      {填放长条块}

  var     i,j,x,y:integer;  full:boolean;

  begin

    full:=true;

    if k<>trunc(n*n/2) then full:=false;{测试是否已放满}

    if full then printf;   {放满则可输出}

    if not full then  begin    {未满}

           x:=0;y:=1;   {以下先搜索未放置的第一个空位置}

           repeat

             x:=x+1;

             if x>n then begin x:=1;y:=y+1 end

           until a[x,y]=‘ ‘;

    {找到后,分两种情况讨论}

           if a[x+1,y]=‘ ‘ then   begin   {第一种情况:横向放置长条块}

               k:=k+1;                             {记录已放的长条数}

               a[x,y]:=chr(k+ord(‘@‘));   {放置}

               a[x+1,y]:=chr(k+ord(‘@‘));

               try;                      {递归找下一个空位置放}

               k:=k-1;

               a[x,y]:=‘ ‘;               {回溯,恢复原状}

               a[x+1,y]:=‘ ‘

           end;

           if a[x,y+1]=‘ ‘ then   begin    {第二种情况:竖向放置长条块}

               k:=k+1;                             {记录已放的长条数}

               a[x,y]:=chr(k+ord(‘0‘));    {放置}

               a[x,y+1]:=chr(k+ord(‘0‘));

               try;                      {递归找下一个空位置放}

               k:=k-1;

               a[x,y]:=‘ ‘;                {回溯,恢复原状}

               a[x,y+1]:=‘ ‘

           end;

    end;

  end;

begin     {主程序}

  fillchar(a,sizeof(a),‘ ‘);  {记录放置情况的字符数组,初始值为空格}

  result:=0; k:=0;  {k记录已放的块数,如果k=n*n/2,则说明已放满}

  try;    {每找到一个空位置,把长条块分别横放和竖放试验}

end.

 

【参考程序2】

const dai:array [1..2,1..2]of integer=((0,1),(1,0));

type node=record

                    w,f:integer;

                    end;

var a:array[1..20,1..20]of integer;

path:array[0..200]of node;

s,m,n,nn,i,j,x,y,dx,dy,dep:integer;

p,px:boolean;

procedure inputn;

begin

{ write(‘input n‘);readln(n);}

 n:=4;

 nn:=n*n;m:=nn div 2;

end;

procedure print;

var i,j:integer;

begin

 inc(s);writeln(‘no‘,s);

 for i:=1 to n do begin

   for j:=1 to n do

     write(a[i,j]:3);writeln;

     end;

     writeln;

end;

function fg(h,v:integer):boolean;

var p:boolean;

begin

   p:=false;

   if (h<=n) and (v<=n) then

                               if a[h,v]=0 then p:=true;

   fg:=p;

  end;

procedure back;

 begin

   dep:=dep-1;

   if dep=0 then begin p:=true ;px:=true;end

      else begin

          i:=path[dep].w;j:=path[dep].f;

          x:=((i-1)div n )+1;y:=i mod n;

          if y=0 then y:=n;

          dx:=x+dai[j,1];dy:=y+dai[j,2];

          a[x,y]:=0;a[dx,dy]:=0;

          end;

end;

begin

 inputn;

 s:=0;

 fillchar(a,sizeof(a),0);

 x:=0;y:=0;dep:=0;

 path[0].w:=0;path[0].f:=0;

 repeat

   dep:=dep+1;

   i:=path[dep-1].w;

   repeat

    i:=i+1;x:=((i-1)div n)+1;

    y:=i mod n;if y=0 then y:=n;

    px:=false;

    if fg(x,y)

     then begin

     j:=0;p:=false;

     repeat

     inc(j);

     dx:=x+dai[j,1];dy:=y+dai[j,2];

     if fg(dx,dy) and (j<=2) then begin

       a[x,y]:=dep;a[dx,dy]:=dep;

       path[dep].w:=i;path[dep].f:=j;

       if dep=m then begin print;dep:=m+1;back;end

                     else begin p:=true;px:=true;end;

                     end

       else if j>=2 then back

                        else p:=false;

       until p;

       end

       else if i>=nn then back

                      else px:=false;

     until px;

    until dep=0;

    readln;

 end.

【题目】找迷宫的最短路径。(广度优先搜索算法)

【参考程序】

uses crt;

const

migong:array  [1..5,1..5] of integer=((0,0,-1,0,0), (0,-1,0,0,-1),

                               (0,0,0,0,0), (0,-1,0,0,0),  (-1,0,0,-1,0));

                               {迷宫数组}

fangxiang:array  [1..4,1..2] of -1..1=((1,0),(0,1),(-1,0),(0,-1));

                                                   {方向增量数组}

type node=record

               lastx:integer;  {上一位置坐标}

               lasty:integer;

               nowx:integer;   {当前位置坐标}

               nowy:integer;

               pre:byte;          {本结点由哪一步扩展而来}

               dep:byte;          {本结点是走到第几步产生的}

            end;

var

    lujing:array[1..25] of node;   {记录走法数组}

    closed,open,x,y,r:integer;

procedure output;

var i,j:integer;

begin

  for i:=1 to 5 do  begin

    for j:=1 to 5 do

      write(migong[i,j]:4); writeln;end;

  i:=open;

  repeat

     with lujing[i] do

           write(nowy:2,‘,‘,nowx:2,‘ <--‘);

     i:=lujing[i].pre;

  until lujing[i].pre=0;

     with lujing[i] do

           write(nowy:2,‘,‘,nowx:2);

end;

begin

  clrscr;

  with lujing[1] do begin  {初始化第一步}

     lastx:=0;      lasty:=0; nowx:=1;nowy:=1;pre:=0;dep:=1;end;

  closed:=0;open:=1;migong[1,1]:=1;

  repeat

    inc(closed); {队列首指针加1,取下一结点}

    for r:=1 to 4 do begin     {以4个方向扩展当前结点}

      x:=lujing[closed].nowx+fangxiang[r,1]; {扩展形成新的坐标值}

      y:=lujing[closed].nowy+fangxiang[r,2];

      if not ((x>5)or(y>5) or (x<1) or (y<1) or (migong[y,x]<>0)) then begin

                                                   {未出界,未走过则可视为新的结点}

                inc(open);   {队列尾指针加1}

                with lujing[open] do begin  {记录新的结点数据}

                    nowx:=x; nowy:=y;

                    lastx:=lujing[closed].nowx;{新结点由哪个坐标扩展而来}

                    lasty:=lujing[closed].nowy;

                    dep:=lujing[closed].dep+1; {新结点走到第几步}

                    pre:=closed;                      {新结点由哪个结点扩展而来}

                end;

                migong[y,x]:=lujing[closed].dep+1;  {当前结点的覆盖范围}

                if (x=5) and (y=5) then begin  {输出找到的第一种方案}

                                 writeln(‘ok,thats all right‘);output;halt;end;

      end;

    end;

  until closed>=open; {直到首指针大于等于尾指针,即所有结点已扩展完}

end.

【题目】火车调度问题

【参考程序】

const max=10;

type shuzu=array[1..max] of 0..max;

var   stack,exitout:shuzu;

      n,total:integer;

procedure output(exitout:shuzu);

var i:integer;

begin

     for i:=1 to n do write(exitout[i]:2);writeln;

     inc(total);

end;

procedure find(dep,have,rest,exit_weizhi:integer;stack,exitout:shuzu);

{dep:步数,have:入口处有多少辆车;rest:车站中有多少车;}

{exit_weizhi:从车站开出后,排在出口处的位置;}

{stack:车站中车辆情况数组;exitout:出口处车辆情况数组}

var i:integer;

begin  {分入站,出站两种情况讨论}

              if have>0 then begin    {还有车未入站}

                 stack[rest+1]:=n+1-have;   {入站}

                 if dep=2*n then output(exitout)

                      else find(dep+1,have-1,rest+1,exit_weizhi,stack,exitout);

              end;

              if rest>0 then begin    {还有车可出站}

                 exitout[exit_weizhi+1]:=stack[rest];   {出站}

                 if dep=2*n then output(exitout)   {经过2n步后,输出一种方案}

                      else find(dep+1,have,rest-1,exit_weizhi+1,stack,exitout);

             end;

end;

 

begin

     writeln(‘input n:‘);

     readln(n);

     fillchar(stack,sizeof(stack),0);

     fillchar(exitout,sizeof(exitout),0);

     total:=0;

     find(1,n,0,0,stack,exitout);

     writeln(‘total:‘,total);

     readln;

end.

【解法2】用穷举二进制数串的方法完成.

uses crt;

var i,n,m,t:integer;

    a,s,c:array[1..1000] of integer;

procedure test;

var t1,t2,k:integer;

    notok:boolean;

begin

     t1:=0;k:=0;t2:=0;

     i:=0;

     notok:=false;

     repeat   {二进制数串中,0表示出栈,1表示入栈}

           i:=i+1; {数串中第I位}

           if a[i]=1 then begin {第I位为1,则表示车要入栈}

              inc(k); {栈中车数}

              inc(t1); {入栈记录,T1为栈指针,S为栈数组}

              s[t1]:=k;

            end

           else {第I位为0,车要出栈}

             if t1<1 then notok:=true {已经无车可出,当然NOT_OK了}

                        else begin inc(t2);c[t2]:=s[t1];dec(t1);end;

                       {栈中有车,出栈,放到C数组中去,T2为C的指针,栈指针T1下调1}

     until (i=2*n) or notok; {整个数串均已判完,或中途出现不OK的情况}

     if (t1=0) and not notok then begin  {该数串符合出入栈的规律则输出}

        inc(m);write(‘[‘,m,‘]‘);

        for i:=1 to t2 do write(c[i]:2);

        writeln;

     end;

end;

begin

     clrscr; write(‘N=‘);readln(n);

     m:=0;

     for i:=1 to 2*n do a[i]:=0; {

     repeat {循环产生N位二进制数串}

           test;   {判断该数串是否符合车出入栈的规律}

           t:=2*n;

           a[t]:=a[t]+1; {产生下一个二进制数串}

           while (t>1) and (a[t]>1) do begin

                 a[t]:=0;dec(t);a[t]:=a[t]+1;

           end;

     until a[1]=2;

     readln;

end.

N:       4        6        7         8

TOTAL:  14       132      429       1430

【题目】农夫过河。一个农夫带着一只狼,一只羊和一些菜过河。河边只有一条一船,由

          于船太小,只能装下农夫和他的一样东西。在无人看管的情况下,狼要吃羊,羊

          要吃菜,请问农夫如何才能使三样东西平安过河。

【算法分析】

    将问题数字化。用1代表狼,2代表羊,3代表菜。则在河某一边物体的分布有以下

8种情况。

┏━━━━┯━┯━━━━━┯━━━━━━━━┯━━━┓

┃物体个数│0│    1           │         2         │    3  ┃

┠────┼─┼─┬─┬─┼──┬──┬──┼───┨

┃分布情况│0│1│2│3│1,2 │1,3 │2,3 │1,2,3 ┃

┠────┼─┼─┼─┼─┼──┼──┼──┼───┨

┃代码之和│0│1│2│3│3 │ 4 │ 5 │      6  ┃

┠────┼─┼─┼─┼─┼──┼──┼──┼───┨

┃是否相克│  │  │  │  │相克│    │相克│         ┃

┗━━━━┷━┷━┷━┷━┷━━┷━━┷━━┷━━━┛

当(两物体在一起而且)代码和为3或5时,必然是相克物体在一起的情况。

【参考程序】

const

     wt:array[0..3]of string[5]=(‘     ‘, ‘WOLF ‘,‘SHEEP‘,‘LEAVE‘);

var left,right:array[1..3] of integer ;

    what,i,total,left_rest,right_rest:integer;

procedure print_left; {输出左岸的物体}

var i:integer;

begin

     total:=total+1;

     write(‘(‘,total,‘)‘);  {第几次渡河}

     for i:=1 to 3 do          write(wt[left[i]]);

     write(‘|‘,‘ ‘:4);

end;

procedure print_right;{输出右岸的物体}

var i:integer;

begin

     write(‘ ‘:4,‘|‘);

     for i:=1 to 3 do if right[i]<>0 then write(wt[right[i]]);

     writeln;

end;

procedure print_back(who:integer);  {右岸矛盾时,需从右岸捎物体→左岸}

var i:integer;

begin

     for i:=1 to 3 do begin

           if not ((i=who) or (right[i]=0)) then begin

           {要捎回左岸的物体不会时刚刚从左岸带来的物体,也不会是不在右岸的物体}

                 what:=right[i];

                 right[i]:=0;

           print_left;  {输出返回过程}

           write(‘<-‘,wt[i]);

           print_right;

           left[i]:=what;  {物体到达左岸}

           end;

     end;

end;

begin

     total:=0;

     for i:=1 to 3 do begin  left[i]:=i; right[i]:=0;end;

     repeat

       for i:=1 to 3 do    {共有3种物体}

           if left[i]<>0 then  {第I种物体在左岸}

            begin

              what:=left[i];left[i]:=0;  {what:放置将要过河的物体编号}

              left_rest:=left[1]+left[2]+left[3];  {求左岸剩余的物体编号总和}

              if (left_rest=3) or (left_rest=5) then left[i]:=what

                               {假如左岸矛盾,则不能带第I种过河,尝试下一物体}

                 else         {否则可带过河}

                        begin print_left;          {输出过河过程}

                                 write(‘->‘,wt[i]);

                                 print_right;

                                 right[i]:=what;  {物体到达右岸}

                                 if left_rest=0 then halt;  {左岸物体已悉数过河}

                                 right_rest:=right[1]+right[2]+right[3];

                                                         {求右岸剩余的物体编号总和}

                                if (right_rest=3)or(right_rest=5) then print_back(i)

                                                          {右岸有矛盾,要捎物体回左岸}

                                    else begin print_left;  {右岸有矛盾,空手回左岸}

                                                   write(‘<-‘,‘ ‘:5);

                                                   print_right;

                                           end;

                        end;

            end;

       until false;  {不断往返}

end.

【题目】七段数码管问题。从一个数字变化到其相邻的数字只需要通过某些段(数目不限)

    1          或拿走某些段(数目不限)来实现.但不允许既增加段又拿起段.

  ┏━┓     例如:3可以变到9,也可以变到1

 6┃ 7┃2 ━┓     ┏━┓        ━┓      ┃

  ┣━┫     ┃     ┃  ┃          ┃      ┃

 5┃  ┃3 ━┫ → ┗━┫          ━┫  →  ┃

  ┗━┛     ┃          ┃          ┃      ┃

    4               ━┛        ━┛        ━┛      ┃

 

要求:(1)判断从某一数字可以变到其它九个数字中的哪几个.

     (2)找出一种排列这十个数字的方案,便这样组成的十位数数值最小.

type kkk=set of 0..9;

const a:array[-1..9] of set of 1..7

          =([5,6],[1,2,3,4,5,6],[2,3],[1,2,4,5,7],[1,2,3,4,7],[2,3,6,7],

            [1,3,4,6,7],[1,3,4,5,6,7],[1,2,3],[1,2,3,4,5,6,7],[1,2,3,4,6,7]);

var

   i,j:integer;

   b:array[-2..9] of set of 0..9;

procedure number(p:string;s,l:integer;k:kkk);

  {P:生成的数;s:用了几个数字;i:前一个是哪个数字;k:可用的数字}

var i:integer;

begin

     for i:=0 to 9 do

           if (i in k) and ( i in b[l]) then begin

           {数字i未用过,且i可由前一个采用的数字变化而来}

              if s=10 then begin writeln(‘Min:‘,p,i);readln;halt;end

                 else number(p+chr(48+i),s+1,i,k-[i]);

           end;

end;

 

begin

     for i:=1 to 9 do b[i]:=[];

     b[-2]:=[0..9];

     for i:=-1 to 8 do

           for j:=i+1 to 9 do

               if (a[i]<=a[j]) or (a[j]<=a[i]) then begin

                    b[i]:=b[i]+[j];

                    b[j]:=b[j]+[abs(i)];

               end;

           b[1]:=b[1]+b[-1];

     for i:=0 to 9 do begin

           write(i,‘ may turn to :‘);

           for j:=0 to 9 do if  j in b[i] then write(j,‘ ‘);

           writeln;

     end;

     number(‘‘,1,-2,[0..9]);

end.

【题目】 把1-8这8个数放入下图8个格中,要求相邻的格(横,竖,对角线)上填的数不连续.

    ┌─┐

    │①│

┌─┼─┼─┐

│②│③│④│

├─┼─┼─┤

│⑤│⑥│⑦│

└─┼─┼─┘

    │⑧│

    └─┘

【参考程序】

const lin:array[1..8] of set of  1..8 =

           ([3,2,4],[1,6,3,5],[5,7,1,2,4,6],[1,6,3,7],

           [3,8,2,6],[2,4,3,5,7,8],[3,8,4,6],[5,7,6]);

var a:array[1..8] of integer;

    total,i:integer; had:set of 1..8;

function ok(dep,i:integer):boolean; {判断是否能在第dep格放数字i}

var j:integer;

begin

     ok:=true;

     for j:=1 to 8 do          {相邻且连续则不行}

           if (j in lin[dep]) and (abs(i-a[j])=1) then ok:=false;

     if i in had then ok:=false; {已用过的也不行}

end;

 

procedure output;    {输出一种方案}

 var j:integer;

 begin

            inc(total);       write(total,‘:‘);

            for j:=1 to 8 do write(a[j]:2);writeln;

end;

procedure find(dep:byte);

var i:byte;

begin

             for i:=1 to 8 do   begin  {每一格可能放1-8这8个数字中的一个}

                    if ok(dep,i) then begin

                       a[dep]:=i;  {把i放入格中}

                       had:=had+[i];  {设置已放过标志}

                       if (dep=8) then output

                                      else find(dep+1);

                        a[dep]:=10;   {回溯,恢复原状态}

                        had:=had-[i];

                    end;

             end;

end;

begin

     fillchar(a,sizeof(a),10);

     total:=0; had:=[];

     find(1);

     writeln(‘End.‘);

end.

【题目】 在4×4的棋盘上放置8个棋,要求每一行,每一列上只能放置2个.

【参考程序1】

算法:8个棋子,填8次.深度为8.注意判断是否能放棋子时,两个两个为一行.

var a:array[1..8] of 0..4;

    line,bz:array[1..4] of 0..2; {line数组:每行已放多少个的计数器}

                                          {bz数组:  每列已放多少个的计数器}

    total:integer;

procedure output; {输出}

var i:integer;

begin

     inc(total);  write(total,‘:   ‘);

     for i:=1 to 8  do write(a[i]);  writeln;

end;

function ok(dep,i:integer):boolean;

begin

 ok:=true;

 if dep mod 2 =0 then  {假如是某一行的第2个,其位置必定要在第1个之后}

    if (i<=a[dep-1])  then ok:=false;

 if (bz[i]=2) or(line[dep div 2]=2) then ok:=false;

                     {某行或某列已放满2个}

end;

procedure find(dep:integer);

var i:integer;

begin

     for i:=1 to 4 do begin

           if ok(dep,i) then   begin

              a[dep]:=i; {放在dep行i列}

              inc(bz[i]);        {某一列记数器加1}

              inc(line[dep div 2]);  {某一行记数器加1}

              if dep=8 then output else find(dep+1);

              dec(bz[i]);      {回溯}

              dec(line[dep div 2]);

              a[dep]:=0;

           end;

     end;

end;

begin

     total:=0; fillchar(a,sizeof(a),0); fillchar(bz,sizeof(bz),0);

     find(1);

end.

【参考程序2】

算法:某一行的放法可能性是(1,2格),(1,3格),(1,4格)....共6种放法

const

fa:array[1..6] of array[1..2]of 1..4=((1,2),(1,3),(1,4),(2,3),(2,4),(3,4));

                                         {六种可能放法的行坐标}

var

 a:array[1..8] of 0..4;

 bz:array[1..4] of 0..2; {列放了多少个的记数器}

 total:integer;

procedure output;

var i:integer;

begin

     inc(total);

     write(total,‘:   ‘);

     for i:=1 to 8  do write(a[i]);

     writeln;

end;

function ok(dep,i:integer):boolean;

begin

 ok:=true;  {判断现在的放法中,相应的两列是否已放够2个}

 if (bz[fa[i,1]]=2) or (bz[fa[i,2]]=2) then ok:=false;

end;

procedure find(dep:integer);

var i:integer;

begin

     for i:=1 to 6 do begin  {共有6种可能放法}

           if ok(dep,i) then   begin

              a[(dep-1)*2+1]:=fa[i,1];{一次连续放置2个}

              a[(dep-1)*2+2]:=fa[i,2];

              inc(bz[fa[i,1]]);               {相应的两列,记数器均加1}

              inc(bz[fa[i,2]]);

              if dep=4 then output else find(dep+1);

              dec(bz[fa[i,1]]);                {回溯}

              dec(bz[fa[i,2]]);

              a[(dep-1)*2+1]:=0;

              a[(dep-1)*2+2]:=0;

           end;

     end;

end;

begin

     total:=0;      fillchar(a,sizeof(a),0);    fillchar(bz,sizeof(bz),0);

     find(1);

end.

【题目】迷宫问题.求迷宫的路径.(深度优先搜索法)

【参考程序1】

const

     Road:array[1..8,1..8]of 0..3=((1,0,0,0,0,0,0,0),

                                            (0,1,1,1,1,0,1,0),

                                            (0,0,0,0,1,0,1,0),

                                            (0,1,0,0,0,0,1,0),

                                            (0,1,0,1,1,0,1,0),

                                            (0,1,0,0,0,0,1,1),

                                            (0,1,0,0,1,0,0,0),

                                            (0,1,1,1,1,1,1,0)); {迷宫数组}

  FangXiang:array[1..4,1..2]of -1..1=((1,0),(0,1),(-1,0),(0,-1));{四个移动方向}

  WayIn:array[1..2]of byte=(1,1);        {入口坐标}

  WayOut:array[1..2]of byte=(8,8);       {出口坐标}

Var i,j,Total:integer;

Procedure Output;

var i,j:integer;

Begin

     For i:=1 to 8 do begin

           for j:=1 to 8 do begin

               if Road[i,j]=1 then write(#219);       {1:墙}

               if Road[i,j]=2 then write(‘ ‘);       {2:曾走过但不通的路}

               if Road[i,j]=3 then write(#03) ;       {3:沿途走过的畅通的路}

               if Road[i,j]=0 then write(‘ ‘) ;      {0:原本就可行的路}

           end;  writeln;

     end; inc(total);  {统计总数}   readln;

end;

Function Ok(x,y,i:byte):boolean;  {判断坐标(X,Y)在第I个方向上是否可行}

Var NewX,NewY:shortint;

Begin

     Ok:=True;

     Newx:=x+FangXiang[i,1];

     Newy:=y+FangXiang[i,2];

     If not((NewX in [1..8]) and (NewY in [1..8])) then Ok:=False;  {超界?}

     If Road[NewX,NewY]=3 then ok:=false;          {是否已走过的路?}

     If Road[NewX,NewY]=1 then ok:=false;          {是否墙?}

End;

Procedure Howgo(x,y:integer);

Var i,NewX,NewY:integer;

Begin

     For i:=1 to 4 do Begin              {每一步均有4个方向可选择}

           If Ok(x,y,i) then Begin       {判断某一方向是否可前进}

              Newx:=x+FangXiang[i,1];    {前进,产生新的坐标}

              Newy:=y+FangXiang[i,2];

              Road[Newx,Newy]:=3;         {来到新位置后,设置已走过标志}

              If (NewX=WayOut[1]) and(NewY=WayOut[2]) Then Output

                               Else Howgo(Newx,NewY); {如到出口则输出,否则下一步递归}

              Road[Newx,Newy]:=2;         {堵死某一方向,不让再走,以免打转}

           end;

     end;

End;

Begin

     total:=0;

     Road[wayin[1],wayin[2]]:=3;                   {入口坐标设置已走标志}

     Howgo(wayin[1],wayin[2]);                     {从入口处开始搜索}

     writeln(‘Total is ‘,total);                {统计总数}

end.

【题目】一笔画问题

从某一点出发,经过每条边一次且仅一次.(具体图见高级本P160)

【参考程序】

const max=6;{顶点数为6}

type shuzu=array[1..max,1..max]of 0..max;

const a:shuzu                         {图的描述与定义 1:连通;0:不通}

       =((0,1,0,1,1,1),

           (1,0,1,0,1,0),

           (0,1,0,1,1,1),

           (1,0,1,0,1,1),

           (1,1,1,1,0,0),

           (1,0,1,1,0,0));

var

   bianshu:array[1..max]of 0..max; {与每一条边相连的边数}

   path:array[0..1000]of integer;  {记录画法,只记录顶点}

   zongbianshu,ii,first,i,total:integer;

procedure output(dep:integer); {输出各个顶点的画法顺序}

var sum,i,j:integer;

begin

     inc(total);

     writeln(‘total:‘,total);

     for i:=0 to dep do write(Path[i]);writeln;

end;

function ok(now,i:integer;var next:integer):boolean;{判断第I条连接边是否已行过}

var j,jj:integer;

begin

     j:=0; jj:=0;

     while jj<>i do begin  inc(j);if a[now,j]<>0 then inc(jj);end;

     next:=j;

      {判断当前顶点的第I条连接边的另一端是哪个顶点,找出后赋给NEXT传回}

     ok:=true;

     if (a[now,j]<>1)  then  ok:=false;  {A[I,J]=0:原本不通}

end;                                               {        =2:曾走过}

procedure init; {初始化}

var i,j :integer;

begin

     total:=0;      {方案总数}

     zongbianshu:=0;   {总边数}

     for i:=1 to max do

           for j:=1 to max do

               if a[i,j]<>0 then begin inc(bianshu[i]);inc(zongbianshu);end;

               {求与每一边连接的边数bianshu[i]}

     zongbianshu:=zongbianshu div 2;  {图中的总边数}

end;

 

procedure find(dep,nowpoint:integer); {dep:画第几条边;nowpoint:现在所处的顶点}

var i,next,j:integer;

begin

     for i:=1 to bianshu[nowpoint] do    {与当前顶点有多少条相接,则有多少种走法}

           if ok(nowpoint,i,next) then begin  {与当前顶点相接的第I条边可行吗?}

                                                        {如果可行,其求出另一端点是NEXT}

              a[nowpoint,next]:=2; a[next,nowpoint]:=2; {置成已走过标志}

              path[dep]:=next;                           {记录顶点,方便输出}

              if dep < zongbianshu then find(dep+1,next)  {未搜索完每一条边}

                                      else output(dep);

              path[dep]:=0;                              {回溯}

              a[nowpoint,next]:=1; a[next,nowpoint]:=1;

           end;

begin

   init;   {初始化,求边数等}

   for first:=1 to max do {分别从各个顶点出发,尝试一笔画}

     fillchar(path,sizeof(path),0);

     path[0]:=first;           {记录其起始的顶点}

     writeln(‘from point ‘,first,‘:‘);readln;

     find(1,first); {从起始点first,一条边一条边地画下去}

end.

【题目】城市遍历问题.

给出六个城市的道路连接图,找出从某一城市出发,遍历每个城市一次且仅一次的最短路径

及其路程长度.(图见高级本P147}

【参考程序】

const

     a:array[1..6,1..6]of 0..10  {城市间连接图.数字表示两城市间的路程}

       =((0,4,8,0,0,0),

         (4,0,3,4,6,0),

         (8,3,0,2,2,0),

         (0,4,2,0,4,9),

         (0,6,2,4,0,4),

         (0,0,0,9,4,0));

var

   had:array[1..6]of boolean;              {某个城市是否已到过}

   pathmin,path:array[1..6]of integer;     {记录遍历顺序}

   ii,first,i,summin,total:integer;

procedure output(dep:integer); sum,i,j:integer;

     sum:=0; i:=2 6    {求这条路的路程总长}

     if sum><6 then find(dep+1)

                     else output(dep);

            had[i]:=false;        {回溯}

            path[dep]:=0;

         end;

end;

begin

   for first:=1 to 6 do begin        {轮流从每一个城市出发,寻找各自的最短路}

     fillchar(had,sizeof(had),false);

     fillchar(path,sizeof(path),0);

     total:=0;

     SumMin:=maxint;                {最短路程}

     path[1]:=first;had[first]:=true;{处理出发点的城市信息,记录在册并置到过标志}

     find(2);                        {到下一城市}

     writeln(‘from city ‘,first,‘ start,total is:‘,total,‘  the min sum:‘,summin);

     for i:=1 to 6 do write(PathMin[i]);writeln; {输出某个城市出发的最短方案}

   end;

end.

【题目】棋子移动问题

[参考程序]

const

     n=3; {n<5}

type

    ss=string[2*n+1];

    ar=array[1..630]of ss;

var

   a:ar;

   f,z:array[1..630] of integer;

   i,j,k,m,h,t,k1:integer;

   s,d:ss;

   q:boolean;

procedure print (x:integer);

var t:array[1..100] of integer;

    y:integer;

begin

     y:=0;

     repeat

           y:=y+1;

           t[y]:=x;

           x:=f[x];

     until x=0;

     writeln(a[t[y]]:2*n+4);

     writeln(copy(‘-------------------------‘,1,2*n+5));

     for x:=2 to y do writeln(x-1:2,‘:‘,a[t[y+1-x]]);

end;

begin

     s:=‘_‘;d:=‘_‘;

     for i:=1 to n do begin

         s:=‘o‘+s+‘*‘;

         d:=‘*‘+d+‘o‘;

     end;

     a[1]:=s;f[1]:=0;z[1]:=n+1;

     q:=false;

     i:=1;j:=2; t:=0;

     repeat

       for h:=1 to 4 do begin

               k:=z[i];k1:=k;s:=a[i];

               case h of

                1:if k>1 then k1:=k-1;

                2:if k<(2*n+1) then k1:=k+1;

                3:if (k>2) and (s[k-1]<>s[k-2]) then  k1:=k-2;

                4:if (k<(2*n)) and(s[k+1]<>s[k+2]) then k1:=k+2;

               end;

           if k<>k1 then begin

              s[k]:=s[k1];s[k1]:=‘_‘;

              m:=1;

              while (a[m]<>s) and (m< j-1) do m:=m+1;

              if a[m] >>s then begin

                 a[j]:=s;f[j]:=i;z[j]:=k1;

                 if s=d then begin

                    print(j);

                    q:=true;

                 end;

                 j:=j+1;

              end;

        

 

   end;

     end; {end for}

     i:=i+1;

  until q or (i=j);

readln;

end.

【题目】求集合元素问题(1,2x+1,3X+1类)

某集合A中的元素有以下特征:

(1)数1是A中的元素

(2)如果X是A中的元素,则2x+1,3x+1也是A中的元素

(3)除了条件(1),(2)以外的所有元素均不是A中的元素

[参考程序1]

uses crt,dos;

var a:array[1..10000]of longint;

    b:array[1..10000]of boolean;

    times,n,m,long,i:longint;

    hour1,minute1,second1,sec1001:word;

   hour2,minute2,second2,sec1002:word;

begin

     write(‘N=‘);readln(n);

{    gettime(hour1,minute1,second1,sec1001);

     times:=minute1*60+second1;

     writeln(minute1,‘:‘,second1);}

     fillchar(b,sizeof(b),0);

     a[1]:=1;m:=2;long:=1;

     while long<=n do begin

           for i:=1 to long do

               if (a[i]*2=m-1) or (a[i]*3=m-1) then

                 if not b[m] then begin

                  inc(long);a[long]:=m;b[m]:=true;break;

               end;

           inc(m);

     end;

{     gettime(hour2,minute2,second2,sec1002);

     times:=minute2*60+second2-times;

     writeln(minute2,‘:‘,second2);

     writeln(‘Ok! Uses Time: ‘,times);}

     for i:=1 to n do write(a[i],‘ ‘);

readln;

end.

[参考程序2]

uses crt;

const n=10000;

var a:array[1..n] of longint;

    i,j,k,l,y:longint;

begin

     clrscr;

     fillchar(a,sizeof(a),0);

     i:=1;j:=1;

     a[i]:=1;

     repeat

           y:=2*a[i]+1;

           k:=j;

           while y〈a[k] do begin

                 a[k+1]:=a[k];

                 k:=k-1;

           end;

           if y>a[k] then begin

              a[k+1]:=y;j:=j+1;

              end

           else for l:=k+1 to j do a[l]:=a[l+1];

           j:=j+1;

           a[j]:=3*a[i]+1;

           inc(i);

     until k>=n;

     for i:=1 to n do begin

         write(a[i],‘ ‘);

         if (i mod 10 =0 ) or (i=n) then writeln

     end;

end.

[参考程序3]

uses crt;

var a:array[1..10000]of longint;

    n,i,one,another,long,s,x,y:longint;

begin

     write(‘n=‘);readln(n);

     a[1]:=1;long:=1;one:=1;another:=1;

     while longy then begin s:=y;inc(another);end

                   else begin s:=x;inc(one);inc(another);end;

           inc(long);a[long]:=s;

     end;

     for i:=1 to n do write(a[i],‘ ‘);

end.

[参考程序4]

var n:integer;

    top,x:longint;

function init(x:longint):boolean;

begin

     if x=1 then init:=true

        else if((x-1)mod 2=0)and(init((x-1)div 2))

                     or((x-1)mod 3=0)and(init((x-1)div 3))then

             init:=true

             else init:=false;

end;

begin

     write(‘input n:‘);

     readln(n);

     x:=0;

     top:=0;

     while top< n do begin

           x:=x+1;

           if init(x) then

              top:=top+1;

              write(x:8);

           end;

     write(‘output end.‘);

     readln

end.

ACM算法集锦,布布扣,bubuko.com

ACM算法集锦

原文:http://www.cnblogs.com/ngyifeng/p/3718601.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!