如果使用一种线性选择算法,则可以达到最坏O(N)的复杂度,不过实际应用中,该算法通常比quick select慢1到2倍,所以并不常用(参考Blum, Floyd, Pratt, Rivest, and Tarjan 1973 Time bounds for selection)
算法思想:
(1)利用快速排序的分治思想,求得待搜索数组按照的主元S[q](pivot)(主元的选定有好几种方法,这里不详细讨论,可参考快速排序),以主元为界分成左右两个区间
(2)通过比较主元的位置,判断第K个大小的数在主元左区间?在主元又区间?还是就是主元?(还要注意边界条件的判断,有可能在边界)
(3)进入子区间递归调用
这里实现了stl风格的quick select,仅仅作为一个mark
#include <algorithm> #include <cassert> namespace algorithm { template<typename _Tp> const _Tp& choose_pivot(const _Tp& x, const _Tp& y, const _Tp& z) { if( (x < y && y < z)||(z < y && y < x) ) return y; else if( (z < x && x < y)||(y < x && x < z) ) return x; else return z; } template<typename _Tp,typename _Compare> const _Tp& choose_pivot(const _Tp& x, const _Tp& y,const _Tp& z, _Compare comp) { if( (comp(x,y) && comp(y,z))||(comp(z,y)&&comp(y,x)) ) return y; else if( (comp(z,x) && comp(x,y))||(comp(y,x)&&comp(x,z))) return x; return z; } template<typename _RandomAccessIterator,typename _Tp> _RandomAccessIterator quick_partition(_RandomAccessIterator first, _RandomAccessIterator last,_Tp pivot) { while( true ){ while( *first < pivot ) ++first; --last; while( pivot < *last ) --last; if( first >= last ) return first; std::swap(*first,*last); ++first; } } template<typename _RandomAccessIterator,typename _Tp, typename _Compare> _RandomAccessIterator quick_partition(_RandomAccessIterator first, _RandomAccessIterator last, _Tp pivot, _Compare comp) { while( true ){ while( comp(*first,pivot) == true ) ++first; --last; while( comp(pivot,*last) == true ) --last; if( first >= last ) return first; std::swap(*first,*last); ++first; } } template<typename _RandomAccessIterator> _RandomAccessIterator quick_select(_RandomAccessIterator first, _RandomAccessIterator last, size_t kth) { typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; if( first == last || last-first <=(_DistanceType)kth )//out of range return last; _ValueType pivot; _RandomAccessIterator mid; while( true ) { if( kth == 0 ) return std::min_element(first,last); else if( first+kth == last - 1 ) return std::max_element(first,last); else{ mid = first+(last-first)/2; pivot = choose_pivot(*first,*mid,*(last-1)); mid = quick_partition(first,last,pivot); if( mid-first > (_DistanceType)kth ) last = mid; else{ kth -= mid-first; first = mid; } } assert( last-first > (_DistanceType)kth); } } template<typename _RandomAccessIterator,typename _Compare> _RandomAccessIterator quick_select(_RandomAccessIterator first, _RandomAccessIterator last, size_t kth,_Compare comp) { typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; if( first == last || last-first <=(_DistanceType)kth )//out of range return last; _ValueType pivot; _RandomAccessIterator mid; while( true ) { if( kth == 0 ) return std::min_element(first,last,comp); else if( first+kth == last - 1 ) return std::max_element(first,last,comp); else{ mid = first+(last-first)/2; pivot = choose_pivot(*first,*mid,*(last-1),comp); mid = quick_partition(first,last,pivot,comp); if( mid-first > (_DistanceType)kth ) last = mid; else{ kth -= mid-first; first = mid; } } assert( last-first > (_DistanceType)kth); } } } //namespace
快速选择(quick_select) 算法分析,布布扣,bubuko.com
原文:http://blog.csdn.net/hustyangju/article/details/25399937