首页 > 其他 > 详细

康托展开

时间:2014-05-10 05:39:04      阅读:427      评论:0      收藏:0      [点我收藏+]
康托展开 
X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n)。这就是康托展开。康托展开可用代码实现。

公式

把一个整数X展开成如下形式:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0!
其中,a为整数,并且0<=a[i]<i(1<=i<=n)

应用实例

{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个小的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个小的数。 2*2!+1*1!+0*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个小数。
bubuko.com,布布扣
 
bubuko.com,布布扣
//#define LOCAL
#include<cstdio>
#include<cstring>
int const MAX_N=12;
int const a[MAX_N]={0,1, 2 ,6 ,24 ,120 ,720 ,5040 ,40320 ,362880 ,3628800 ,39916800};
char c[MAX_N];
long solve(char* ch)
{
    long sum=0;
    int i,j,con;
    for(i=0;i<MAX_N;i++)
    {
        con=0;
        for(j=i+1;j<MAX_N;j++)
        {
            if(ch[i]>ch[j])
                con++;
        }
        sum=sum+con*a[MAX_N-i-1];
    }
    return (sum+1);
}
int main()
{
#ifdef LOCAL
    freopen("Input","r",stdin);
    freopen("output1","w",stdout);
#endif
    int N;
    scanf("%d\n",&N);
    while(N--)
    {
        gets(c);
        printf("%ld\n",solve(c));
    }
    return 0;
}
bubuko.com,布布扣

 

 

康托展开,布布扣,bubuko.com

康托展开

原文:http://www.cnblogs.com/jianfengyun/p/3719551.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!