首页 > 编程语言 > 详细

20145207《Java程序设计》第6周学习总结

时间:2016-09-01 18:41:34      阅读:305      评论:0      收藏:0      [点我收藏+]

教材学习内容总结

一.输入/输出

InputStreamOutputstream

串流设计的概念

从应用程序角度看,将数据从来源取出,可以使用输入串流,将数据写入目的地,可以使用输出串流;在Java中,输入串流代表对象为java.io.InputStream实例,输出串流代表对象为java.io.OutputStream实例;

串流继承框架

System.in与System.out分别代表标准输入和标准输出;

可以使用System的setIn()方法指定InputStream实例,用setOut()方法指定printStream;代码如下:

System.err为printStream实例,称为标准输出串流,用于立即显示错误信息;

FileInputStream:是InputStream的子类,可以指定文件名创建实例,一旦创建文档就开启,接着就可以用来写出数据,主要操作了InputStream的read()抽象方法,从而读取文档中的数据;

FileOutputStream:是OutputStream的子类,可以指定文件名创建实例,一旦创建文档就开启,接着就可以用来写出数据,主要操作了OutputStream中的write抽象方法,使之可写出数据到文档;

不使用,时都要用close()关闭文档;

ByteStream是InputStream的子类,可以指定byte数组创建实例,一旦创建就可以将byte数组当做数据源进行读取。ByteArrayOutputStream是OutputStream的子类,可以指定byte数组创建实例,一旦创建就可以将byte数组当做目的地写出数据;

串流装饰处理器

若想要为输入输出的数据作加工处理,可以使用打包器类(如:scanner);

InputStream和OutputStream的一些子类也具有打包器的作用,这些子类创建时,可以接受InputStream和OutputStream实例;

常用打包器:BufferedInputStream、BufferOutputSream(具备缓冲区作用),DataInputStream、DataOutputStream(具备数据转换处理作用),ObjectInputStream、ObjectOutputStream(具备对象串行化能力)等;代码如下:

package cc.openhome;

 

import java.io.*;

 

public class BufferedIO {

    public static void dump(InputStream src, OutputStream dest)

                              throws IOException {

        try(InputStream input = new BufferedInputStream(src);

             OutputStream output = new BufferedOutputStream(dest)) {

            byte[] data = new byte[1024];

            int length;

            while ((length = input.read(data)) != -1) {

                output.write(data, 0, length);

            }

        }

    }

}

package cc.openhome;

 

import java.io.*;

 

public class Member {

    private String number;

    private String name;

    private int age;

 

    public Member(String number, String name, int age) {

        this.number = number;

        this.name = name;

        this.age = age;

    }

 

    public String getNumber() {

        return number;

    }

 

    public void setNumber(String number) {

        this.number = number;

    }

 

    public String getName() {

        return name;

    }

 

    public void setName(String name) {

        this.name = name;

    }

 

    public int getAge() {

        return age;

    }

 

    public void setAge(int age) {

        this.age = age;

    }

   

    @Override

    public String toString() {

        return String.format("(%s, %s, %d)", number, name, age);

    }

   

    public void save() throws IOException {

        try(DataOutputStream output =

                new DataOutputStream(new FileOutputStream(number))) {

            output.writeUTF(number);

            output.writeUTF(name);

            output.writeInt(age);

        }

    }

   

    public static Member load(String number) throws IOException {

        Member member;

        try(DataInputStream input =

                new DataInputStream(new FileInputStream(number))) {

            member = new Member(

                    input.readUTF(), input.readUTF(), input.readInt());

        }

        return member;

    }

}

package cc.openhome;

 

import java.io.IOException;

import static java.lang.System.out;

 

public class MemberDemo {

    public static void main(String[] args) throws IOException {

        Member[] members = {

                    new Member("B1234", "Justin", 90),

                    new Member("B5678", "Monica", 95),

                    new Member("B9876", "Irene", 88)

        };

        for(Member member : members) {

            member.save();

        }

        out.println(Member.load("B1234"));

        out.println(Member.load("B5678"));

        out.println(Member.load("B9876"));

    }

}

 

import static java.lang.System.out;

 

public class Member2Demo {

    public static void main(String[] args) throws Exception {

        Member2[] members = {new Member2("B1234", "Justin", 90),

                             new Member2("B5678", "Monica", 95),

                             new Member2("B9876", "Irene", 88)};

        for(Member2 member : members) {

            member.save();

        }

        out.println(Member2.load("B1234"));

        out.println(Member2.load("B5678"));

        out.println(Member2.load("B9876"));

    }

}

字符处理类

• Reader与Writer继承架构

java.io.Reader类:抽象化了字符数据读入的来源;

java.io.Writer类:抽象化了数据写出目的地;代码如下:

FileReader:读取文档并将读到的数据转换成字符;StringWriter:将字符数据写至它最后使用toString()的方法取得字符串;代码如下:

import java.io.*;

 

public class CharUtil {

    public static void dump(Reader src, Writer dest) throws IOException {

        try(Reader input = src; Writer output = dest) {

            char[] data = new char[1024];

            int length;

            while((length = input.read(data)) != -1) {

                output.write(data, 0, length);

            }

        }

    }

}

package cc.openhome;

 

import java.io.*;

 

public class CharUtilDemo {

    public static void main(String[] args) throws IOException {

        FileReader reader = new FileReader(args[0]);

        StringWriter writer = new StringWriter();

        CharUtil.dump(reader, writer);

        System.out.println(writer.toString());

    }

}

字符处理装饰器

将字节数据转换成对应的编码字符,可以使用InputStreamReader、OutputStreamWriter对串流数据打包;代码如下:

import java.io.*;

 

public class CharUtil2 {

    public static void dump(Reader src, Writer dest) throws IOException {

        try(Reader input = src; Writer output = dest) {

            char[] data = new char[1024];

            int length;

            while((length = input.read(data)) != -1) {

                output.write(data, 0, length);

            }

        }

    }

   

    public static void dump(InputStream src, OutputStream dest,

                             String charset) throws IOException {

        dump(

            new InputStreamReader(src, charset),

            new OutputStreamWriter(dest, charset)

        );

    }

 

    // 采用预设编码

    public static void dump(InputStream src, OutputStream dest)

                           throws IOException {

        dump(src, dest, System.getProperty("file.encoding"));

    }

}

提高字符输入输出效率,提供缓冲区作用:BufferedReader、BufferWriter;

printWriter:对OutStream打包,对writer打包;

.线程与并行API

线程

线程简介

单线程程序:启动的程序从main()程序进入点开始至结束只有一个流程;多线程程序:拥有多个流程;

java中从main()开始的流程会由主线程执行可以创建Thread实例来执行Runable实例定义的run()方法;代码如下:(龟兔赛跑)

package cc.openhome;

 

public class Tortoise implements Runnable {

    private int totalStep;

    private int step;

 

    public Tortoise(int totalStep) {

        this.totalStep = totalStep;

    }

 

    @Override

    public void run() {

        while (step < totalStep) {

            step++;

            System.out.printf("乌龟跑了 %d 步...%n", step);

        }

    }

}

import static java.lang.System.out;

 

public class TortoiseHareRace {

    public static void main(String[] args) {

        boolean[] flags = {true, false};

        int totalStep = 10;

        int tortoiseStep = 0;

        int hareStep = 0;

        out.println("龟兔赛跑开始...");

        while(tortoiseStep < totalStep && hareStep < totalStep) {

            tortoiseStep++;      

            out.printf("乌龟跑了 %d 步...%n", tortoiseStep);

            boolean isHareSleep = flags[((int) (Math.random() * 10)) % 2];

            if(isHareSleep) {

                out.println("兔子睡着了zzzz");

            } else {

                hareStep += 2;   

                out.printf("兔子跑了 %d 步...%n", hareStep);

            }

        }

    }

}

public class TortoiseHareRace2 {

    public static void main(String[] args) {

        Tortoise tortoise = new Tortoise(10);

        Hare hare = new Hare(10);

        Thread tortoiseThread = new Thread(tortoise);

        Thread hareThread = new Thread(hare);

        tortoiseThread.start();

        hareThread.start();

    }

}

• ThreadRunnable

创建Thread实例就是为JVM加装CPU,启动额外CPU就是调用实例的start()方法,额外CPU的进入点可以定义在Runable接口的run()方法中;

除了将流程这样定义,另一个撰写多线程程序的方式就就是继承Thread类,重新定义run()方法;

操作Runnable接口的好处就是较有弹性,你的类还有机会继承其他类;若继承了Thread类,通常是为了直接利用Thread中定义的一些方法;

线程生命周期

Daemon线程:如果一个Thread被标示为Deamon线程,在所有的非Deamon线程都结束时,JVM就会自动终止;代码如下:

public class DaemonDemo {

 

    public static void main(String[] args) {

        Thread thread = new Thread(() -> {

            while (true) {

                System.out.println("Orz");

            }

        });

        // thread.setDaemon(true);

        thread.start();

    }

}

Thread基本状态图:可执行、被阻断、执行中;

线程看起来但事实是同一个时间点上,一个CPU还是只能执行一个线程,只是因其不断切换且很快,所以看起来像是同时执行;

线程有其优先权,setPriority()方法设定优先权,利用多线程改进效能;

当线程使用join()加入另一线程时,另一线程会等待被加入的线程工作完毕再继续它的动作;代码如下:

线程完成run()方法后,就会进入Dead,此时不可以再调用start()方法否则会抛出IlligleThreadException;

关于ThreadGroup

每个线程都属于某个线程群组,线程一旦归入某个群组,就无法再更换;可以使用以下程序片段取得当前线程所属线程群组名:Thread.currentThread().getThreadGroup().getname();

使用uncoughtException()方法处理群组中某个线程出现异常未被捕捉的情况,可以重新定义此方法;
代码如下:

package cc.openhome;

 

public class ThreadGroupDemo {

 

    public static void main(String[] args) {

        ThreadGroup group = new ThreadGroup("group") {

            @Override

            public void uncaughtException(Thread thread, Throwable throwable) {

                System.out.printf("%s: %s%n",

                        thread.getName(), throwable.getMessage());

            }

        };

 

        Thread thread = new Thread(group, () -> {

            throw new RuntimeException("测试例外");

        });

 

        thread.start();

    }

}

public class ThreadGroupDemo2 {

 

    public static void main(String[] args) {

        ThreadGroup group = new ThreadGroup("group");

       

        Thread thread1 = new Thread(group, () -> {

            throw new RuntimeException("thread1 测试例外");

        });

        thread1.setUncaughtExceptionHandler((thread, throwable) -> {

            System.out.printf("%s: %s%n",

                    thread.getName(), throwable.getMessage());

        });

 

        Thread thread2 = new Thread(group, () -> {

            throw new RuntimeException("thread2 测试例外");

        });

 

        thread1.start();

        thread2.start();

    }

}

• synchronizedvolatile

如果在方法上标示synchronized,则执行方法必须取得该实例的锁定,才能执行该区块内容;

可重入同步:线程取得某对象锁定后,若执行过程中又要执行synchronized,尝试取得锁定的对象来源又是同一个,则可以直接执行;

synchronized:互斥性:该区块同时间只能有一个线程,可见性:线程离开该区块后,另一线程接触到的就是上一线程改变后的对象状态;

在java中对于可见性的要求,可以使用volatile达到变量范围,在变量上声明volatile,表示变量是不稳定、易变的,也就是可能在多线程下存取,其存取一定是在共享内存中进行,代码如下:

package cc.openhome;

 

class Variable1 {

    static int i = 0, j = 0;

 

    static void one() {

        i++;

        j++;

    }

 

    static void two() {

        System.out.printf("i = %d, j = %d%n", i, j);

    }

}

 

public class Variable1Test {

    public static void main(String[] args) {

        Thread thread1 = new Thread(() -> {

            while (true) {

                Variable1.one();

            }

        });

        Thread thread2 = new Thread(() -> {

            while (true) {

                Variable1.two();

            }

        });

       

        thread1.start();

        thread2.start();

    }

}

class Variable2 {

    static int i = 0, j = 0;

 

    static synchronized void one() {

        i++;

        j++;

    }

 

    static synchronized void two() {

        System.out.printf("i = %d, j = %d%n", i, j);

    }

}

 

public class Variable2Test {

    public static void main(String[] args) {

        Thread thread1 = new Thread(() -> {

            while (true) {

                Variable2.one();

            }

        });

        Thread thread2 = new Thread(() -> {

            while (true) {

                    Variable2.two();

                }

        });

       

        thread1.start();

        thread2.start();

    }

}

class Variable3 {

    volatile static int i = 0, j = 0;

 

    static void one() {

        i++;

        j++;

    }

 

    static void two() {

        System.out.printf("i = %d, j = %d%n", i, j);

    }

}

 

public class Variable3Test {

    public static void main(String[] args) {

        Thread thread1 = new Thread(() -> {

            while (true) {

                Variable3.one();

            }

        });

        Thread thread2 = new Thread(() -> {

            while (true) {

                Variable3.two();

            }

        });

        thread1.start();

        thread2.start();

    }

}

等待与通知

调用锁定对象的wait()方法,线程会释放对象锁定,并进入对象等待集合而处于阻断状态,其他线程可以竞争对象锁定,取得锁定的线程可以执行synchronized范围的代码;

被竞争的对象调用notify()方法时,会从对象等待集合中随机通知一个线程加入排班,再次执行synchronized前,被通知的线程会与其他线程共同竞争对象锁定;代码如下:

public class Consumer implements Runnable {

    private Clerk clerk;

   

    public Consumer(Clerk clerk) {

        this.clerk = clerk;

    }

   

    public void run() {

        System.out.println("消费者开始消耗整数......");

        for(int i = 1; i <= 10; i++) {

            try {

                clerk.getProduct();

            } catch (InterruptedException ex) {

                throw new RuntimeException(ex);

            }

        }

    }

 }

public class Clerk {

    private int product = -1;

 

    public synchronized void setProduct(int product) throws InterruptedException {

        waitIfFull();

        this.product = product;

        System.out.printf("生产者设定 (%d)%n", this.product);

        notify();

    }

 

    private synchronized void waitIfFull() throws InterruptedException {

        while (this.product != -1) {

            wait();

        }

    }

 

    public synchronized int getProduct() throws InterruptedException {

        waitIfEmpty();

        int p = this.product;

        this.product = -1;

        System.out.printf("消费者取走 (%d)%n", p);

        notify();

        return p;

    }

 

    private synchronized void waitIfEmpty() throws InterruptedException {

        while (this.product == -1) {

            wait();

        }

    }

}

public class ProducerConsumerDemo {

    public static void main(String[] args) {

        Clerk clerk = new Clerk();

        new Thread(new Producer(clerk)).start();

        new Thread(new Consumer(clerk)).start();

    }   

}

并行API

• lockReadWriteLockCondition

java.util.concurrent.locks包中提供Lock、ReadWriteLock、Condition接口以及相关操作类,可以提供类似synchronized、wait()、notify()、notifyall()的作用,以及更多高级功能;

Lock接口主要操作类之一为ReentrantLook,可以达到synchronized的作用,也提供额外功能;代码如下:

ReadWriteLock:如果已经有线程取得Lock对象锁定,尝试再次锁定同一Lock对象是可以的。想要锁定Lock对象,可以调用Lock()方法;

Condition接口用来搭配Lock,一个Condition对象可代表一个等待集合,可以重复调用Lock的newCondition(),取得多个Condition实例,这代表了有多个等待集合;

使用Executor

java.util.concurrent.Executor接口,目的是将Runnable的指定与实际如何执行分离,Executor接口只定义了一个execute();

像线程池这样类服务的行为,实际上是定义在Executor的子接口java.util.concurrent.ExecutorService当中,通用的ExecutorService由抽象类AbstractExecutorService操作,如果需要线程池的功能,则可以使用其子类java.util.concurrent.ThreadPoolExecutor;

ExecutorService还定义了submit()、invokeAll()、invokeAny()等方法,这些方法中出现了java.util.concurrent.Future、java.util.concurrent.Callable接口;

ScheduledExecutorService为ExecutorService的子接口,可以进行工作排程,schedule()方法用来排定Runnable或Callable实例延迟多久执行一次,并返回Future子接口ScheduledFuture的实例;

并行Collection简介

java.util.concurrent包中,提供一些支持并行操作的Collection子接口与操作类;

CopyOnWriteArrayList操作了List接口,这个类的实例在写入操作时,内部会建立新数组,并复制原有数组索引的参考,然后在新数组上进行写入操作,写入完成后,再将内部原参考旧数组的变量参考至新数组;

CopyOnWriteArraySet操作了Set接口,内部使用CopyOnWriteArrayList来完成Set的各种操作,因此一些特性与CopyOnWriteArrayList是相同的;

BlockingQueue是Queue的子接口,新定义了put()、take()方法;代码如下:

 

import java.util.concurrent.BlockingQueue;

 

public class Producer3 implements Runnable {

    private BlockingQueue<Integer> productQueue;

   

    public Producer3(BlockingQueue<Integer> productQueue) {

        this.productQueue = productQueue;

    }

   

    public void run() {

        System.out.println("生产者开始生产整数......");

        for(int product = 1; product <= 10; product++) {

            try {

                productQueue.put(product);

                System.out.printf("生产者提供整数 (%d)%n", product);

            } catch (InterruptedException ex) {

                throw new RuntimeException(ex);

            }

        }      

    }

}

import java.util.concurrent.BlockingQueue;

 

public class Consumer3 implements Runnable {

    private BlockingQueue<Integer> productQueue;

   

    public Consumer3(BlockingQueue<Integer> productQueue) {

        this.productQueue = productQueue;

    }

   

    public void run() {

        System.out.println("消费者开始消耗整数......");

        for(int i = 1; i <= 10; i++) {

            try {

                int product = productQueue.take();

                System.out.printf("消费者消耗整数 (%d)%n", product);

            } catch (InterruptedException ex) {

                throw new RuntimeException(ex);

            }

        }

    }

 }

import java.util.concurrent.*;

 

public class ProducerConsumerDemo3 {

    public static void main(String[] args) {

        BlockingQueue queue = new ArrayBlockingQueue(1);

        new Thread(new Producer3(queue)).start();

        new Thread(new Consumer3(queue)).start();

    }   

}

 

教材学习中的问题和解决过程

这两章的内容是最多的,是真的多!但是在理解方面,并没有前面的概念性的知识难理解,在将书上的代码敲过一些之后,对于这些内容就有了很好地理解。但是书上东西实在太多了!!!好了不说了,焊电表去了

代码调试中的问题和解决过程

p345,有关volatile部分不太清楚。
package cc.openhome;

class Variable1 {
    static int i = 0, j = 0;
 
    static void one() {
        i++;
        j++;
    }
 
    static void two() {
        System.out.printf("i = %d, j = %d%n", i, j);
    }
}
 
public class Variable1Test {
    public static void main(String[] args) {
        Thread thread1 = new Thread(() -> {
            while (true) {
                Variable1.one();
           }
            });
    Thread thread2 = new Thread(() -> {
            while (true) {
                Variable1.two();
            }
        });
    
        thread1.start();
        thread2.start();
    }
}

j远大于i不理解,晚上我问问同学。

20145207《Java程序设计》第6周学习总结

原文:http://www.cnblogs.com/20145207lza/p/5830720.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!