Given a string S and a string T, count the number of distinct subsequences of T in S.
A
subsequence of a string is a new string which is formed from the original string
by deleting some (can be none) of the characters without disturbing the relative
positions of the remaining characters. (ie, "ACE"
is a
subsequence
of "ABCDE"
while "AEC"
is
not).
Here is
an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
思路:看了半天题目,才明白,原来是计算子序列在原始字符串里通过删除字符来得到的,能得到多少种这样的子序列字符串。
这道题使用动态规划的思路来解题。我们使用dp[i][j]来表示S的前i个字符和T的前j个字符匹配子串的个数。
1.初始条件:T为空时,S中的任一个都可匹配,所以dp[i][0]=1;S为空,T中任意都不可以匹配,dp[0][j]=0;
2.若S的第i个字符和T的第j个字符匹配时,我们可以知道,一是S的前i-1个字符匹配T的前j-1个字符,二是S的前i-1个字符已经匹配T的前j个字符,则有如下表达式dp[i][j]=dp[i-1][j-1]+dp[i-1][j].
3.若S的第i个字符和T的第j个字符不匹配,说明S的第i-1个字符子串已与T的第j个字符子串匹配,则dp[i][j]=dp[i-1][j];
class Solution { public: int numDistinct(string S, string T) { int len_s=S.size(); int len_t=T.size(); if(len_s<len_t) return 0; vector<vector<int> > dp(len_s+1,vector<int>(len_t+1,0)); for(int i=0;i<=len_s;i++) dp[i][0]=1; for(int i=1;i<=len_s;i++) { for(int j=1;j<=len_t;j++) { if(S[i-1]==T[j-1]) dp[i][j]=dp[i-1][j-1]+dp[i-1][j]; else dp[i][j]=dp[i-1][j]; } } return dp[len_s][len_t]; } };
Distinct Subsequences,布布扣,bubuko.com
原文:http://www.cnblogs.com/awy-blog/p/3720025.html