首页 > 其他 > 详细

SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析

时间:2014-05-12 10:59:19      阅读:908      评论:0      收藏:0      [点我收藏+]

三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界

今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多个)相关样本检验,下面以“数学,物理,生物”样本数据为例,

假设:H0:  数学,物理,生物三门课程的总体分布是相同的

           H1:数学,物理,生物三门课程的总体分布是不相同的。

样本数据如下所示:

bubuko.com,布布扣

 

从上图可以看出:处理组为:3组 (假设用K表示)      区组为:5组 (我们只取前面的5组) (假设用b表示)    (上图只截取了一部分)

1:我们先将每一组进行“秩序编号”并进行排序, 例如第一组秩序为:1,  2,, 3.

                                                                                        第二组秩序为:1,  2,    3  

                                                                                         第三组秩序为:1,  2, 3

                                                                                         第四组秩序为:1,  2, 3

                                                                                         第五组秩序为:2, 1, 3

         我们相加可以得出RI,        RI分别为:6, 9, 15  

  (先横向排序,最后再纵向相加,就可以得出RI,    RI表示:第i个处理组“秩和”)

 

好,回归正题

打开SPSS软件后,点击“分析”——非参数检验——旧对话框—K个相关样本分析,进入如下页面:

bubuko.com,布布扣

 

提供三种“检验类型”一般选择“Friedman(F)(秩和检验)类型,将变量移入“检验变量”下拉框内,点击确定,得到如下结果:

bubuko.com,布布扣

从以上结果,我们可以得出以下结论:

1:卡方,检验统计量为:12.088

2:自由度为:K-1 =2

3:渐近显著性为:0.002    由于0.002<0.01  所以否定H0的假设,得出H1的假设

也说明:“数学,物理,生物”三门学科的成绩水平是不相同的。

SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析,布布扣,bubuko.com

SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析

原文:http://www.cnblogs.com/qiernonstop/p/3720493.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!