According to the Wikipedia‘s article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970."
Given a board with m by n cells, each cell has an initial state live (1) or dead (0). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):
Write a function to compute the next state (after one update) of the board given its current state.
Follow up:
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
public class Solution { public void gameOfLife(int[][] board) { if(board == null || board.length == 0) return; int m = board.length, n = board[0].length; for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) { int lives = liveNeighbors(board, m, n, i, j); // In the beginning, every 2nd bit is 0; // So we only need to care about when the 2nd bit will become 1. if(board[i][j] == 1 && lives >= 2 && lives <= 3) { board[i][j] = 3; // Make the 2nd bit 1: 01 ---> 11 } if(board[i][j] == 0 && lives == 3) { board[i][j] = 2; // Make the 2nd bit 1: 00 ---> 10 } } } for(int i = 0; i < m; i++) { for(int j = 0; j < n; j++) { board[i][j] >>= 1; // Get the 2nd state. } } } public int liveNeighbors(int[][] board, int m, int n, int i, int j) { int lives = 0; for(int x = Math.max(i - 1, 0); x <= Math.min(i + 1, m - 1); x++) { for(int y = Math.max(j - 1, 0); y <= Math.min(j + 1, n - 1); y++) { lives += board[x][y] & 1; } } lives -= board[i][j] & 1; return lives; } }
原文:http://www.cnblogs.com/lishiblog/p/5855182.html