train.c
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <errno.h>
#include "linear.h"
#include <time.h>//modification
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define INF HUGE_VAL
void print_null(const char *s) {}
void exit_with_help()
{
printf(
"Usage: train [options] training_set_file [model_file]\n"
"options:\n"
"-s type : set type of solver (default 1)\n"
" for multi-class classification\n"
" 0 -- L2-regularized logistic regression (primal)\n"
" 1 -- L2-regularized L2-loss support vector classification (dual)\n"
" 2 -- L2-regularized L2-loss support vector classification (primal)\n"
" 3 -- L2-regularized L1-loss support vector classification (dual)\n"
" 4 -- support vector classification by Crammer and Singer\n"
" 5 -- L1-regularized L2-loss support vector classification\n"
" 6 -- L1-regularized logistic regression\n"
" 7 -- L2-regularized logistic regression (dual)\n"
" 8 -- L2-regularized SVOR\n"//my modification
" 9 -- L2-regularized NPSVOR\n"
" 10 -- L2-regularized SVMOP\n"
" for regression\n"
" 11 -- L2-regularized L2-loss support vector regression (primal)\n"
" 12 -- L2-regularized L2-loss support vector regression (dual)\n"
" 13 -- L2-regularized L1-loss support vector regression (dual)\n"
"-c cost : set the parameter C (default 1)\n"
"-o cost one: set the parameter C1 for NPSVOR(defult = C)\n"
"-t cost two: set the parameter C2 for NPSVOR(defult = C)\n"
"-g grid seach C1 and C2: g=1 find C1=C2, g=2 find C1!=C2\n"
"-r rho: parameter of ADMM for SVOR\n"
"-l weight loss for SVOR,|k-y|^w, w in {0,1,2}\n"
"-m select the algorithm for svor\n"
"-p epsilon : set the epsilon in loss function of SVR (default 0.1)\n"
"-e epsilon : set tolerance of termination criterion\n"
" -s 0 and 2\n"
" |f‘(w)|_2 <= eps*min(pos,neg)/l*|f‘(w0)|_2,\n"
" where f is the primal function and pos/neg are # of\n"
" positive/negative data (default 0.01)\n"
" -s 11\n"
" |f‘(w)|_2 <= eps*|f‘(w0)|_2 (default 0.001)\n"
" -s 1, 3, 4, and 7\n"
" Dual maximal violation <= eps; similar to libsvm (default 0.1)\n"
" -s 5 and 6\n"
" |f‘(w)|_1 <= eps*min(pos,neg)/l*|f‘(w0)|_1,\n"
" where f is the primal function (default 0.01)\n"
" -s 12 and 13\n"
" |f‘(alpha)|_1 <= eps |f‘(alpha0)|,\n"
" where f is the dual function (default 0.1)\n"
"-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias term added (default -1)\n"
"-wi weight: weights adjust the parameter C of different classes (see README for details)\n"
"-v n: n-fold cross validation mode\n"
"-C : find parameter C (only for -s 0 and 2)\n"
"-q : quiet mode (no outputs)\n"
);
exit(1);
}
void exit_input_error(int line_num)
{
fprintf(stderr,"Wrong input format at line %d\n", line_num);
exit(1);
}
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,‘\n‘) == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
void read_problem(const char *filename);
void do_cross_validation(const char *filename);
void do_find_parameter_C(const char *filename);
void do_find_parameter_npsvor(const char *filename);
struct feature_node *x_space;
struct parameter param;
struct problem prob;
struct model* model_;
int flag_cross_validation;
int flag_find_C;
int flag_C_specified;
int flag_solver_specified;
int nr_fold;
double bias;
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, model_file_name);
read_problem(input_file_name);
error_msg = check_parameter(&prob,¶m);
if(error_msg)
{
fprintf(stderr,"ERROR: %s\n",error_msg);
exit(1);
}
if (flag_find_C)
{
if(param.solver_type == L2R_NPSVOR && param.g ==2)
do_find_parameter_npsvor(input_file_name);
else
do_find_parameter_C(input_file_name);
}
else if(flag_cross_validation)
{
do_cross_validation(input_file_name);
}
else
{
//fprintf(stderr,"Test:param.solver_type %d\n",param.solver_type);
model_=train(&prob, ¶m);
// for(i=0;i<sub_prob.n;i++)
// info("w%.6f\n",model_->w[i]);
// for(i=0;i<nr_class-1;i++)
// info("b %.6f\n",model_->b[i]);
if(save_model(model_file_name, model_))
{
fprintf(stderr,"can‘t save model to file %s\n",model_file_name);
exit(1);
}
free_and_destroy_model(&model_);
}
destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
free(line);
return 0;
}
static const char *solver_type_table[]=
{
"L2R_LR", "L2R_L2LOSS_SVC_DUAL", "L2R_L2LOSS_SVC", "L2R_L1LOSS_SVC_DUAL", "MCSVM_CS",
"L1R_L2LOSS_SVC", "L1R_LR", "L2R_LR_DUAL",
"L2R_SVOR", "L2R_NPSVOR", "L2R_SVMOP",//My modification
"L2R_L2LOSS_SVR", "L2R_L2LOSS_SVR_DUAL", "L2R_L1LOSS_SVR_DUAL", NULL
};
void do_find_parameter_C(const char *input_file_name)
{
double start_C, best_C, best_acc_rate, best_mae_rate;
double max_C = 1024;
clock_t start, stop;
double cvtime;
if (flag_C_specified)
start_C = param.C;
else
start_C = -1.0;
printf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
start=clock();
find_parameter_C(&prob, ¶m, nr_fold, start_C, max_C, &best_C, &best_acc_rate,&best_mae_rate);
stop=clock();
cvtime = (double)(stop-start)/CLOCKS_PER_SEC;
printf("Best C = %g CV acc = %g CV mae = %g%%\n", best_C, best_acc_rate, best_mae_rate);
param.C = best_C;
if(param.solver_type == L2R_NPSVOR)
{
param.C1 = param.C;
param.C2 = param.C;
}
// printf("%g\n",log(param.C)/log(2.0));
do_cross_validation(input_file_name);
char file_name[1024];
sprintf(file_name,"%s_%s%g_out.log",solver_type_table[param.solver_type],input_file_name,prob.bias);
FILE * out = fopen(file_name,"a+t");
fprintf(out, "CVTime = %g\n",cvtime);
if (NULL != out)
fclose(out) ; // clear the old file.
}
void do_find_parameter_npsvor(const char *input_file_name)
{
double start_C, best_C1, best_C2, best_acc_rate, best_mae_rate;
double max_C = 1024;
if (flag_C_specified)
start_C = param.C;
else
start_C = -1.0;
printf("Doing parameter search with %d-fold cross validation.\n", nr_fold);
find_parameter_npsvor(&prob, ¶m, nr_fold, start_C, max_C, &best_C1, &best_C2, &best_acc_rate,&best_mae_rate);
printf("Best C1 = %g Best C2 = %g CV acc = %g CV mae = %g%%\n", best_C1, best_C2, best_acc_rate, best_mae_rate);
}
void do_cross_validation(const char *input_file_name)
{
int i;
int total_correct = 0;
double total_error = 0;
double *target = Malloc(double, prob.l);
double cvtime;
char file_name[1024];
sprintf(file_name,"%s_%s%g_cv.log",solver_type_table[param.solver_type],input_file_name,prob.bias);
FILE * log = fopen(file_name,"w");
sprintf(file_name,"%s_%s%g_out.log",solver_type_table[param.solver_type],input_file_name,prob.bias);
FILE * out = fopen(file_name,"w");
clock_t start, stop;
start=clock();
cross_validation(&prob,¶m,nr_fold,target);
stop=clock();
cvtime = (double)(stop-start)/CLOCKS_PER_SEC;
for(i=0;i<prob.l;i++)
{if(target[i] == prob.y[i])
++total_correct;
total_error += fabs(target[i]-prob.y[i]);
}
//printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
printf(" %g %g\n",1.0*total_correct/prob.l,total_error/prob.l);
fprintf(out, "parameter C = %g, Accuracy= %g MAE= %g Time = %g ",
param.C, 1.0*total_correct/prob.l,total_error/prob.l, cvtime);
for(i=0;i<prob.l;i++)
fprintf(log,"%g %g\n", prob.y[i], target[i]);
if (NULL != log)
fclose(log) ; // clear the old file.
free(target);
if (NULL != out)
fclose(out) ; // clear the old file.
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
{
int i;
void (*print_func)(const char*) = NULL; // default printing to stdout
// default values
param.solver_type = L2R_L2LOSS_SVC_DUAL;
param.C = 1;
param.eps = INF; // see setting below
param.p = 0.1;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
param.init_sol = NULL;
/*
* -------------------my modification---------------------------
*/
param.rho = 1;
param.wl = 0;
param.svor = 1;
param.npsvor = 1;
param.C1 = 1;
param.C2 = 1;
param.g = 1;
/*
* -------------------my modification---------------------------
*/
flag_cross_validation = 0;
flag_C_specified = 0;
flag_solver_specified = 0;
flag_find_C = 0;
bias = -1;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != ‘-‘) break;
if(++i>=argc)
exit_with_help();
switch(argv[i-1][1])
{
/*
* -------------------my modification---------------------------
*/
case ‘r‘://my parameter s;
param.rho = atof(argv[i]);
break;
case ‘l‘://my parameter t;
param.wl = atof(argv[i]);
break;
case ‘m‘://my parameter t;
param.svor = atof(argv[i]);
param.npsvor = atof(argv[i]);
break;
case ‘o‘: // one
param.C1 = atof(argv[i]);
break;
case ‘t‘: // two
param.C2 = atof(argv[i]);
break;
case ‘g‘: // two
param.g = atof(argv[i]);
break;
/*
* -------------------my modification---------------------------
*/
case ‘s‘:
param.solver_type = atoi(argv[i]);
flag_solver_specified = 1;
break;
case ‘c‘:
param.C = atof(argv[i]);
param.C1 = param.C; //
param.C2 = param.C; //
flag_C_specified = 1;
break;
case ‘p‘:
param.p = atof(argv[i]);
break;
case ‘e‘:
param.eps = atof(argv[i]);
break;
case ‘B‘:
bias = atof(argv[i]);
break;
case ‘w‘:
++param.nr_weight;
param.weight_label = (int *) realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *) realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
case ‘v‘:
flag_cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case ‘q‘:
print_func = &print_null;
i--;
break;
case ‘C‘:
flag_find_C = 1;
i--;
break;
default:
fprintf(stderr,"unknown option: -%c\n", argv[i-1][1]);
exit_with_help();
break;
}
}
set_print_string_function(print_func);
// determine filenames
if(i>=argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
if(i<argc-1)
strcpy(model_file_name,argv[i+1]);
else
{
char *p = strrchr(argv[i],‘/‘);
if(p==NULL)
p = argv[i];
else
++p;
sprintf(model_file_name,"%s.model",p);
}
// default solver for parameter selection is L2R_L2LOSS_SVC
if(flag_find_C)
{
if(!flag_cross_validation)
nr_fold = 5;
if(!flag_solver_specified)
{
fprintf(stderr, "Solver not specified. Using -s 2\n");
param.solver_type = L2R_L2LOSS_SVC;
}
// else if(param.solver_type != L2R_LR && param.solver_type != L2R_L2LOSS_SVC)
// {
// fprintf(stderr, "Warm-start parameter search only available for -s 0 and -s 2\n");
// exit_with_help();
// }
}
if(param.eps == INF)
{
switch(param.solver_type)
{
/*
* -------------------my modification---------------------------
*/
case L2R_SVOR:
param.eps = 0.1;
param.rho = 1;
break;
case L2R_NPSVOR:
param.eps = 0.1;
break;
/*
* -------------------my modification---------------------------
*/
case L2R_LR:
case L2R_L2LOSS_SVC:
param.eps = 0.01;
break;
case L2R_L2LOSS_SVR:
param.eps = 0.001;
break;
case L2R_L2LOSS_SVC_DUAL:
case L2R_L1LOSS_SVC_DUAL://in this case, eps is set to 0.1
case L2R_SVMOP://in this case, eps is set to 0.1
//param.eps = 0.1;
//break;
case MCSVM_CS:
case L2R_LR_DUAL:
param.eps = 0.1;
break;
case L1R_L2LOSS_SVC:
case L1R_LR:
param.eps = 0.01;
break;
case L2R_L1LOSS_SVR_DUAL:
case L2R_L2LOSS_SVR_DUAL:
param.eps = 0.1;
break;
}
}
}
// read in a problem (in libsvm format)
void read_problem(const char *filename)
{
int max_index, inst_max_index, i;
size_t elements, j;
FILE *fp = fopen(filename,"r");
char *endptr;
char *idx, *val, *label;
if(fp == NULL)
{
fprintf(stderr,"can‘t open input file %s\n",filename);
exit(1);
}
prob.l = 0;
elements = 0;
max_line_len = 1024;
line = Malloc(char,max_line_len);
while(readline(fp)!=NULL)
{
char *p = strtok(line," \t"); // label
// features
while(1)
{
p = strtok(NULL," \t");
if(p == NULL || *p == ‘\n‘) // check ‘\n‘ as ‘ ‘ may be after the last feature
break;
elements++;
}
elements++; // for bias term
prob.l++;
}
rewind(fp);
prob.bias=bias;
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct feature_node *,prob.l);
x_space = Malloc(struct feature_node,elements+prob.l);
max_index = 0;
j=0;
for(i=0;i<prob.l;i++)
{
inst_max_index = 0; // strtol gives 0 if wrong format
readline(fp);
prob.x[i] = &x_space[j];
label = strtok(line," \t\n");
if(label == NULL) // empty line
exit_input_error(i+1);
prob.y[i] = strtod(label,&endptr);
if(endptr == label || *endptr != ‘\0‘)
exit_input_error(i+1);
while(1)
{
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x_space[j].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != ‘\0‘ || x_space[j].index <= inst_max_index)
exit_input_error(i+1);
else
inst_max_index = x_space[j].index;
errno = 0;
x_space[j].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != ‘\0‘ && !isspace(*endptr)))
exit_input_error(i+1);
++j;
}
if(inst_max_index > max_index)
max_index = inst_max_index;
if(prob.bias >= 0)
x_space[j++].value = prob.bias;
x_space[j++].index = -1;
}
if(prob.bias >= 0)
{
prob.n=max_index+1;
for(i=1;i<prob.l;i++)
(prob.x[i]-2)->index = prob.n;
x_space[j-2].index = prob.n;
}
else
prob.n=max_index;
fclose(fp);
}
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <locale.h>
#include <time.h>//modification
#include "linear.h"
#include "tron.h"
typedef signed char schar;
template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
#ifndef min
template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
#endif
#ifndef max
template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
#endif
template <class S, class T> static inline void clone(T*& dst, S* src, int n)
{
dst = new T[n];
memcpy((void *)dst,(void *)src,sizeof(T)*n);
}
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
#define INF HUGE_VAL
static void print_string_stdout(const char *s)
{
fputs(s,stdout);
fflush(stdout);
}
static void print_null(const char *s) {}
static void (*liblinear_print_string) (const char *) = &print_string_stdout;
#if 1
static void info(const char *fmt,...)
{
char buf[BUFSIZ];
va_list ap;
va_start(ap,fmt);
vsprintf(buf,fmt,ap);
va_end(ap);
(*liblinear_print_string)(buf);
}
#else
static void info(const char *fmt,...) {}
#endif
class sparse_operator
{
public:
static double nrm2_sq(const feature_node *x)//norm2-square
{
double ret = 0;
while(x->index != -1)
{
ret += x->value*x->value;
x++;
}
return (ret);
}
static double dot(const double *s, const feature_node *x)
{
double ret = 0;
while(x->index != -1)
{
ret += s[x->index-1]*x->value;
x++;
}
return (ret);
}
static void axpy(const double a, const feature_node *x, double *y)//a*x+y
{
while(x->index != -1)
{
y[x->index-1] += a*x->value;
x++;
}
}
};
class l2r_lr_fun: public function
{
public:
l2r_lr_fun(const problem *prob, double *C);
~l2r_lr_fun();
double fun(double *w);
void grad(double *w, double *g);
void Hv(double *s, double *Hs);
int get_nr_variable(void);
private:
void Xv(double *v, double *Xv);
void XTv(double *v, double *XTv);
double *C;
double *z;
double *D;
const problem *prob;
};
l2r_lr_fun::l2r_lr_fun(const problem *prob, double *C)
{
int l=prob->l;
this->prob = prob;
z = new double[l];
D = new double[l];
this->C = C;
}
l2r_lr_fun::~l2r_lr_fun()
{
delete[] z;
delete[] D;
}
double l2r_lr_fun::fun(double *w)
{
int i;
double f=0;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
Xv(w, z);
for(i=0;i<w_size;i++)
f += w[i]*w[i];
f /= 2.0;
for(i=0;i<l;i++)
{
double yz = y[i]*z[i];
if (yz >= 0)
f += C[i]*log(1 + exp(-yz));
else
f += C[i]*(-yz+log(1 + exp(yz)));
}
return(f);
}
void l2r_lr_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
for(i=0;i<l;i++)
{
z[i] = 1/(1 + exp(-y[i]*z[i]));
D[i] = z[i]*(1-z[i]);
z[i] = C[i]*(z[i]-1)*y[i];
}
XTv(z, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + g[i];
}
int l2r_lr_fun::get_nr_variable(void)
{
return prob->n;
}
void l2r_lr_fun::Hv(double *s, double *Hs)
{
int i;
int l=prob->l;
int w_size=get_nr_variable();
double *wa = new double[l];
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
Hs[i] = 0;
for(i=0;i<l;i++)
{
feature_node * const xi=x[i];
wa[i] = sparse_operator::dot(s, xi);
wa[i] = C[i]*D[i]*wa[i];
sparse_operator::axpy(wa[i], xi, Hs);
}
for(i=0;i<w_size;i++)
Hs[i] = s[i] + Hs[i];
delete[] wa;
}
void l2r_lr_fun::Xv(double *v, double *Xv)
{
int i;
int l=prob->l;
feature_node **x=prob->x;
for(i=0;i<l;i++)
Xv[i]=sparse_operator::dot(v, x[i]);
}
void l2r_lr_fun::XTv(double *v, double *XTv)
{
int i;
int l=prob->l;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
XTv[i]=0;
for(i=0;i<l;i++)
sparse_operator::axpy(v[i], x[i], XTv);
}
class l2r_l2_svc_fun: public function
{
public:
l2r_l2_svc_fun(const problem *prob, double *C);
~l2r_l2_svc_fun();
double fun(double *w);
void grad(double *w, double *g);
void Hv(double *s, double *Hs);
int get_nr_variable(void);
protected:
void Xv(double *v, double *Xv);
void subXTv(double *v, double *XTv);
double *C;
double *z;
double *D;
int *I;
int sizeI;
const problem *prob;
};
l2r_l2_svc_fun::l2r_l2_svc_fun(const problem *prob, double *C)
{
int l=prob->l;
this->prob = prob;
z = new double[l];
D = new double[l];
I = new int[l];
this->C = C;
}
l2r_l2_svc_fun::~l2r_l2_svc_fun()
{
delete[] z;
delete[] D;
delete[] I;
}
double l2r_l2_svc_fun::fun(double *w)
{
int i;
double f=0;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
Xv(w, z);
for(i=0;i<w_size;i++)
f += w[i]*w[i];
f /= 2.0;
for(i=0;i<l;i++)
{
z[i] = y[i]*z[i];
double d = 1-z[i];
if (d > 0)
f += C[i]*d*d;
}
return(f);
}
void l2r_l2_svc_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
sizeI = 0;
for (i=0;i<l;i++)
if (z[i] < 1)
{
z[sizeI] = C[i]*y[i]*(z[i]-1);
I[sizeI] = i;
sizeI++;
}
subXTv(z, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + 2*g[i];
}
int l2r_l2_svc_fun::get_nr_variable(void)
{
return prob->n;
}
void l2r_l2_svc_fun::Hv(double *s, double *Hs)
{
int i;
int w_size=get_nr_variable();
double *wa = new double[sizeI];
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
Hs[i]=0;
for(i=0;i<sizeI;i++)
{
feature_node * const xi=x[I[i]];
wa[i] = sparse_operator::dot(s, xi);
wa[i] = C[I[i]]*wa[i];
sparse_operator::axpy(wa[i], xi, Hs);
}
for(i=0;i<w_size;i++)
Hs[i] = s[i] + 2*Hs[i];
delete[] wa;
}
void l2r_l2_svc_fun::Xv(double *v, double *Xv)
{
int i;
int l=prob->l;
feature_node **x=prob->x;
for(i=0;i<l;i++)
Xv[i]=sparse_operator::dot(v, x[i]);
}
void l2r_l2_svc_fun::subXTv(double *v, double *XTv)
{
int i;
int w_size=get_nr_variable();
feature_node **x=prob->x;
for(i=0;i<w_size;i++)
XTv[i]=0;
for(i=0;i<sizeI;i++)
sparse_operator::axpy(v[i], x[I[i]], XTv);
}
class l2r_l2_svr_fun: public l2r_l2_svc_fun
{
public:
l2r_l2_svr_fun(const problem *prob, double *C, double p);
double fun(double *w);
void grad(double *w, double *g);
private:
double p;
};
l2r_l2_svr_fun::l2r_l2_svr_fun(const problem *prob, double *C, double p):
l2r_l2_svc_fun(prob, C)
{
this->p = p;
}
double l2r_l2_svr_fun::fun(double *w)
{
int i;
double f=0;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
double d;
Xv(w, z);
for(i=0;i<w_size;i++)
f += w[i]*w[i];
f /= 2;
for(i=0;i<l;i++)
{
d = z[i] - y[i];
if(d < -p)
f += C[i]*(d+p)*(d+p);
else if(d > p)
f += C[i]*(d-p)*(d-p);
}
return(f);
}
void l2r_l2_svr_fun::grad(double *w, double *g)
{
int i;
double *y=prob->y;
int l=prob->l;
int w_size=get_nr_variable();
double d;
sizeI = 0;
for(i=0;i<l;i++)
{
d = z[i] - y[i];
// generate index set I
if(d < -p)
{
z[sizeI] = C[i]*(d+p);
I[sizeI] = i;
sizeI++;
}
else if(d > p)
{
z[sizeI] = C[i]*(d-p);
I[sizeI] = i;
sizeI++;
}
}
subXTv(z, g);
for(i=0;i<w_size;i++)
g[i] = w[i] + 2*g[i];
}
// A coordinate descent algorithm for
// multi-class support vector machines by Crammer and Singer
//
// min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i alpha^m_i
// s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 \forall i
//
// where e^m_i = 0 if y_i = m,
// e^m_i = 1 if y_i != m,
// C^m_i = C if m = y_i,
// C^m_i = 0 if m != y_i,
// and w_m(\alpha) = \sum_i \alpha^m_i x_i
//
// Given:
// x, y, C
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Appendix of LIBLINEAR paper, Fan et al. (2008)
#define GETI(i) ((int) prob->y[i])
// To support weights for instances, use GETI(i) (i)
class Solver_MCSVM_CS
{
public:
Solver_MCSVM_CS(const problem *prob, int nr_class, double *C, double eps=0.1, int max_iter=100000);
~Solver_MCSVM_CS();
void Solve(double *w);
private:
void solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new);
bool be_shrunk(int i, int m, int yi, double alpha_i, double minG);
double *B, *C, *G;
int w_size, l;
int nr_class;
int max_iter;
double eps;
const problem *prob;
};
Solver_MCSVM_CS::Solver_MCSVM_CS(const problem *prob, int nr_class, double *weighted_C, double eps, int max_iter)
{
this->w_size = prob->n;
this->l = prob->l;
this->nr_class = nr_class;
this->eps = eps;
this->max_iter = max_iter;
this->prob = prob;
this->B = new double[nr_class];
this->G = new double[nr_class];
this->C = weighted_C;
}
Solver_MCSVM_CS::~Solver_MCSVM_CS()
{
delete[] B;
delete[] G;
}
int compare_double(const void *a, const void *b)
{
if(*(double *)a > *(double *)b)
return -1;
if(*(double *)a < *(double *)b)
return 1;
return 0;
}
void Solver_MCSVM_CS::solve_sub_problem(double A_i, int yi, double C_yi, int active_i, double *alpha_new)
{
int r;
double *D;
clone(D, B, active_i);
if(yi < active_i)
D[yi] += A_i*C_yi;
qsort(D, active_i, sizeof(double), compare_double);
double beta = D[0] - A_i*C_yi;
for(r=1;r<active_i && beta<r*D[r];r++)
beta += D[r];
beta /= r;
for(r=0;r<active_i;r++)
{
if(r == yi)
alpha_new[r] = min(C_yi, (beta-B[r])/A_i);
else
alpha_new[r] = min((double)0, (beta - B[r])/A_i);
}
delete[] D;
}
bool Solver_MCSVM_CS::be_shrunk(int i, int m, int yi, double alpha_i, double minG)
{
double bound = 0;
if(m == yi)
bound = C[GETI(i)];
if(alpha_i == bound && G[m] < minG)
return true;
return false;
}
void Solver_MCSVM_CS::Solve(double *w)
{
int i, m, s;
int iter = 0;
double *alpha = new double[l*nr_class];
double *alpha_new = new double[nr_class];
int *index = new int[l];
double *QD = new double[l];
int *d_ind = new int[nr_class];
double *d_val = new double[nr_class];
int *alpha_index = new int[nr_class*l];
int *y_index = new int[l];
int active_size = l;
int *active_size_i = new int[l];
double eps_shrink = max(10.0*eps, 1.0); // stopping tolerance for shrinking
bool start_from_all = true;
// Initial alpha can be set here. Note that
// sum_m alpha[i*nr_class+m] = 0, for all i=1,...,l-1
// alpha[i*nr_class+m] <= C[GETI(i)] if prob->y[i] == m
// alpha[i*nr_class+m] <= 0 if prob->y[i] != m
// If initial alpha isn‘t zero, uncomment the for loop below to initialize w
for(i=0;i<l*nr_class;i++)
alpha[i] = 0;
for(i=0;i<w_size*nr_class;i++)
w[i] = 0;
for(i=0;i<l;i++)
{
for(m=0;m<nr_class;m++)
alpha_index[i*nr_class+m] = m;
feature_node *xi = prob->x[i];
QD[i] = 0;
while(xi->index != -1)
{
double val = xi->value;
QD[i] += val*val;
// Uncomment the for loop if initial alpha isn‘t zero
// for(m=0; m<nr_class; m++)
// w[(xi->index-1)*nr_class+m] += alpha[i*nr_class+m]*val;
xi++;
}
active_size_i[i] = nr_class;
y_index[i] = (int)prob->y[i];
index[i] = i;
}
while(iter < max_iter)
{
double stopping = -INF;
for(i=0;i<active_size;i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0;s<active_size;s++)
{
i = index[s];
double Ai = QD[i];
double *alpha_i = &alpha[i*nr_class];
int *alpha_index_i = &alpha_index[i*nr_class];
if(Ai > 0)
{
for(m=0;m<active_size_i[i];m++)
G[m] = 1;
if(y_index[i] < active_size_i[i])
G[y_index[i]] = 0;
feature_node *xi = prob->x[i];
while(xi->index!= -1)
{
double *w_i = &w[(xi->index-1)*nr_class];
for(m=0;m<active_size_i[i];m++)
G[m] += w_i[alpha_index_i[m]]*(xi->value);
xi++;
}
double minG = INF;
double maxG = -INF;
for(m=0;m<active_size_i[i];m++)
{
if(alpha_i[alpha_index_i[m]] < 0 && G[m] < minG)
minG = G[m];
if(G[m] > maxG)
maxG = G[m];
}
if(y_index[i] < active_size_i[i])
if(alpha_i[(int) prob->y[i]] < C[GETI(i)] && G[y_index[i]] < minG)
minG = G[y_index[i]];
for(m=0;m<active_size_i[i];m++)
{
if(be_shrunk(i, m, y_index[i], alpha_i[alpha_index_i[m]], minG))
{
active_size_i[i]--;
while(active_size_i[i]>m)
{
if(!be_shrunk(i, active_size_i[i], y_index[i],
alpha_i[alpha_index_i[active_size_i[i]]], minG))
{
swap(alpha_index_i[m], alpha_index_i[active_size_i[i]]);
swap(G[m], G[active_size_i[i]]);
if(y_index[i] == active_size_i[i])
y_index[i] = m;
else if(y_index[i] == m)
y_index[i] = active_size_i[i];
break;
}
active_size_i[i]--;
}
}
}
if(active_size_i[i] <= 1)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
if(maxG-minG <= 1e-12)
continue;
else
stopping = max(maxG - minG, stopping);
for(m=0;m<active_size_i[i];m++)
B[m] = G[m] - Ai*alpha_i[alpha_index_i[m]] ;
solve_sub_problem(Ai, y_index[i], C[GETI(i)], active_size_i[i], alpha_new);
int nz_d = 0;
for(m=0;m<active_size_i[i];m++)
{
double d = alpha_new[m] - alpha_i[alpha_index_i[m]];
alpha_i[alpha_index_i[m]] = alpha_new[m];
if(fabs(d) >= 1e-12)
{
d_ind[nz_d] = alpha_index_i[m];
d_val[nz_d] = d;
nz_d++;
}
}
xi = prob->x[i];
while(xi->index != -1)
{
double *w_i = &w[(xi->index-1)*nr_class];
for(m=0;m<nz_d;m++)
w_i[d_ind[m]] += d_val[m]*xi->value;
xi++;
}
}
}
iter++;
if(iter % 10 == 0)
{
info(".");
}
if(stopping < eps_shrink)
{
if(stopping < eps && start_from_all == true)
break;
else
{
active_size = l;
for(i=0;i<l;i++)
active_size_i[i] = nr_class;
info("*");
eps_shrink = max(eps_shrink/2, eps);
start_from_all = true;
}
}
else
start_from_all = false;
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0;i<w_size*nr_class;i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0;i<l*nr_class;i++)
{
v += alpha[i];
if(fabs(alpha[i]) > 0)
nSV++;
}
for(i=0;i<l;i++)
v -= alpha[i*nr_class+(int)prob->y[i]];
info("Objective value = %lf\n",v);
info("nSV = %d\n",nSV);
delete [] alpha;
delete [] alpha_new;
delete [] index;
delete [] QD;
delete [] d_ind;
delete [] d_val;
delete [] alpha_index;
delete [] y_index;
delete [] active_size_i;
}
// A coordinate descent algorithm for
// L1-loss and L2-loss SVM dual problems
//
// min_\alpha 0.5(\alpha^T (Q + D)\alpha) - e^T \alpha,
// s.t. 0 <= \alpha_i <= upper_bound_i,
//
// where Qij = yi yj xi^T xj and
// D is a diagonal matrix
//
// In L1-SVM case:
// upper_bound_i = Cp if y_i = 1
// upper_bound_i = Cn if y_i = -1
// D_ii = 0
// In L2-SVM case:
// upper_bound_i = INF
// D_ii = 1/(2*Cp) if y_i = 1
// D_ii = 1/(2*Cn) if y_i = -1
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Algorithm 3 of Hsieh et al., ICML 2008
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static void solve_l2r_l1l2_svc(
const problem *prob, double *w, double eps,
double Cp, double Cn, int solver_type)
{
// info("%f %f\n",Cp,Cn);
int l = prob->l;
int w_size = prob->n;
int i, s, iter = 0;
double C, d, G;
double *QD = new double[l];
int max_iter = 1000;
int *index = new int[l];
double *alpha = new double[l];
schar *y = new schar[l];
int active_size = l;
// PG: projected gradient, for shrinking and stopping
double PG;
double PGmax_old = INF;
double PGmin_old = -INF;
double PGmax_new, PGmin_new;
// default solver_type: L2R_L2LOSS_SVC_DUAL
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
double upper_bound[3] = {INF, 0, INF};
if(solver_type == L2R_L1LOSS_SVC_DUAL)
{
diag[0] = 0;
diag[2] = 0;
upper_bound[0] = Cn;
upper_bound[2] = Cp;
}
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
for(i=0; i<l; i++)
alpha[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
QD[i] = diag[GETI(i)];
feature_node * const xi = prob->x[i];
QD[i] += sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(y[i]*alpha[i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
PGmax_new = -INF;
PGmin_new = INF;
for (i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
const schar yi = y[i];
feature_node * const xi = prob->x[i];
G = yi*sparse_operator::dot(w, xi)-1;
C = upper_bound[GETI(i)];
G += alpha[i]*diag[GETI(i)];
PG = 0;
if (alpha[i] == 0)
{
if (G > PGmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
PG = G;
}
else if (alpha[i] == C)
{
if (G < PGmin_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
PG = G;
}
else
PG = G;
PGmax_new = max(PGmax_new, PG);
PGmin_new = min(PGmin_new, PG);
if(fabs(PG) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C);
d = (alpha[i] - alpha_old)*yi;
sparse_operator::axpy(d, xi, w);
}
}
iter++;
if(iter % 10 == 0)
info(".");
if(PGmax_new - PGmin_new <= eps)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
PGmax_old = INF;
PGmin_old = -INF;
continue;
}
}
PGmax_old = PGmax_new;
PGmin_old = PGmin_new;
if (PGmax_old <= 0)
PGmax_old = INF;
if (PGmin_old >= 0)
PGmin_old = -INF;
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
for(i=0; i<l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
//info("nSV = %d\n",nSV);
//info("Percentage of SVs:%f \n",(double)nSV*100/l);
info(" %f \n",(double)nSV*100/l);
delete [] QD;
delete [] alpha;
delete [] y;
delete [] index;
}
static void solve_l2r_l1l2_svmop(
const problem *prob, double *w, double eps,
double Cp, double Cn, int solver_type)
{
// info("%f %f\n",Cp,Cn);
int l = prob->l;
int w_size = prob->n;
int i, s, iter = 0;
double C, d, G;
double *QD = new double[l];
int max_iter = 1000;
int *index = new int[l];
double *alpha = new double[l];
schar *y = new schar[l];
int active_size = l;
// PG: projected gradient, for shrinking and stopping
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
// default solver_type: L2R_L2LOSS_SVC_DUAL
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
double upper_bound[3] = {INF, 0, INF};
if(solver_type == L2R_L1LOSS_SVC_DUAL)
{
diag[0] = 0;
diag[2] = 0;
upper_bound[0] = Cn;
upper_bound[2] = Cp;
}
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
for(i=0; i<l; i++)
alpha[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
QD[i] = diag[GETI(i)];
feature_node * const xi = prob->x[i];
QD[i] += sparse_operator::nrm2_sq(xi);
// sparse_operator::axpy(y[i]*alpha[i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for (i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
const schar yi = y[i];
feature_node * const xi = prob->x[i];
double violation = 0;
G = yi*sparse_operator::dot(w, xi)-1;
C = upper_bound[GETI(i)];
G += alpha[i]*diag[GETI(i)];
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == C)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(G) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C);
d = (alpha[i] - alpha_old)*yi;
sparse_operator::axpy(d, xi, w);
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
for(i=0; i<l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
//info("nSV = %d\n",nSV);
//info("Percentage of SVs:%f \n",(double)nSV*100/l);
info(" %f \n",(double)nSV*100/l);
delete [] QD;
delete [] alpha;
delete [] y;
delete [] index;
}
/*
* ------------------modification begin---------------------------
*/
int calculate_y_k(double y, int k)
{
if(y>k+1){
return 1;
}else{
return -1;
}
}
double compute_nu_i_k(double y, int k, double power){
if(power==0) return 1;
else return fabs(pow(fabs(double(y- k)), power) - pow(fabs(double(y- k-1)), power));
}
static void solve_l2r_svor(const problem *prob, const parameter *param, double *w,
double *b, int *label, int nr_class)//cost refers to power
{
int i, j, k, s, iter = 0;
int l = prob->l;
// int nr_class = 0;//number of classes
// int max_nr_class = 16;//max number of classes
// int *label = new int[max_nr_class];//category of labels
double *y = prob->y;
// int this_label = 0;
// for(i=0;i<l;i++)
// {
// this_label = (int)prob->y[i];
// for(j=0;j<nr_class;j++)
// {
// if(this_label == label[j])
// break;
// }
// y[i] = this_label;
// if(j == nr_class)
// {
// label[nr_class] = this_label;
// ++nr_class;
// }
// }
double eps = param->eps;
double C = param->C;
double power = param->wl;
// int w_size = prob->n;
double d, G;
double *QD = new double[l];
int max_iter = 1000;
int *index = new int[(nr_class - 1)*l];
double *alpha = new double[(nr_class - 1)*l];
int active_size = (nr_class - 1)*l;
// PG: projected gradient, for shrinking and stopping
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
/*
//to be check
// default solver_type: L2R_L2LOSS_SVC_DUAL
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
double upper_bound[3] = {INF, 0, INF};
if(solver_type == L2R_L1LOSS_SVC_DUAL)
{
diag[0] = 0;
diag[2] = 0;
upper_bound[0] = Cn;
upper_bound[2] = Cp;
}
*/
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
memset(alpha,0,sizeof(double)*((nr_class - 1)*l));
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
double xi_square = sparse_operator::nrm2_sq(xi);
QD[i] = xi_square+1; // add
for(k= 0; k<nr_class-1; k++)
{
//int y_i_k = calculate_y_k(y[i], k+1);
//QD[k*l + i] = y_i_k*y_i_k*(xi_square+1);
// QD[k*l + i] = xi_square+1;
// sparse_operator::axpy(y_i_k*alpha[i*nr_class + k], xi, w);
index[k*l + i] = k*l + i;
}
}
int kk, ss;//kk(k‘),ss(s) in the paper
// int i0,kk0,ss0,t;
while (iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for (i=0; i<active_size; i++)
{
j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
kk = i/l;//k‘
ss = i%l;//s
int y_s_ksign = (prob->y[ss] <= label[kk] ? -1 : 1);//ysk‘
feature_node * const xss = prob->x[ss];
G = y_s_ksign*(sparse_operator::dot(w, xss)+b[kk])-1;
//C = upper_bound[GETI(i)];
//G += alpha[i]*diag[GETI(i)];
double violation = 0;
double upper_bound = C*compute_nu_i_k(y[ss], label[kk], power);
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == upper_bound)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(G) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[ss], 0.0), upper_bound);
d = (alpha[i] - alpha_old)*y_s_ksign;
sparse_operator::axpy(d, xss, w);
b[kk] += d;
}
}
// printf("%d ",active_size);
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == (nr_class - 1)*l)
break;
else
{
active_size = (nr_class - 1)*l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n",iter);
// for(i=0;i<nr_class-1;i++) info("%.6f\n",b[i]);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
//double v = 0;
/*
for(i=0; i<w_size; i++)
v += w[i]*w[i];
for(i=0; i<(nr_class - 1)*l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
*/
int nSV = 0;
for(i=0; i<l; i++)
{
double alpha_i = 0;
for(k= 0; k<nr_class-1; k++)
{
alpha_i += alpha[k*l + i];
}
if(alpha_i > 0)
++nSV;
}
info("nSV = %d\n",nSV);
delete [] QD;
delete [] alpha;
delete [] y;
delete [] index;
}
// static void solve_l2r_svor(const problem *prob, const parameter *param, double *w,
// double *b, int nr_class)//cost refers to power
// {
// int i, j, k, s, iter = 0;
// int l = prob->l;
// // int nr_class = 0;//number of classes
// // int max_nr_class = 16;//max number of classes
// // int *label = new int[max_nr_class];//category of labels
// double *y = prob->y;
// // int this_label = 0;
// // for(i=0;i<l;i++)
// // {
// // this_label = (int)prob->y[i];
// // for(j=0;j<nr_class;j++)
// // {
// // if(this_label == label[j])
// // break;
// // }
// // y[i] = this_label;
// // if(j == nr_class)
// // {
// // label[nr_class] = this_label;
// // ++nr_class;
// // }
// // }
// double eps = param->eps;
// double C = param->C;
// double power = param->wl;
// // int w_size = prob->n;
// double d, G;
// double *QD = new double[l];
// int max_iter = 1000;
// int *index = new int[(nr_class - 1)*l];
// double *alpha = new double[(nr_class - 1)*l];
// int active_size = (nr_class - 1)*l;
// // PG: projected gradient, for shrinking and stopping
// double PG;
// double PGmax_old = INF;
// double PGmin_old = -INF;
// double PGmax_new, PGmin_new;
// /*
// //to be check
// // default solver_type: L2R_L2LOSS_SVC_DUAL
// double diag[3] = {0.5/Cn, 0, 0.5/Cp};
// double upper_bound[3] = {INF, 0, INF};
// if(solver_type == L2R_L1LOSS_SVC_DUAL)
// {
// diag[0] = 0;
// diag[2] = 0;
// upper_bound[0] = Cn;
// upper_bound[2] = Cp;
// }
// */
// // Initial alpha can be set here. Note that
// // 0 <= alpha[i] <= upper_bound[GETI(i)]
// memset(alpha,0,sizeof(double)*((nr_class - 1)*l));
// // for(i=0; i<(nr_class - 1)*l; i++)
// // alpha[i] = 0;
// // for(i=0; i<w_size; i++)
// // w[i] = 0;
// // for(i=0; i<nr_class-1; i++)
// // b[i] = 0;
// for(i=0; i<l; i++)
// {
// feature_node * const xi = prob->x[i];
// double xi_square = sparse_operator::nrm2_sq(xi);
// QD[i] = xi_square+1; // add
// for(k= 0; k<nr_class-1; k++)
// {
// //int y_i_k = calculate_y_k(y[i], k+1);
// //QD[k*l + i] = y_i_k*y_i_k*(xi_square+1);
// // QD[k*l + i] = xi_square+1;
// // sparse_operator::axpy(y_i_k*alpha[i*nr_class + k], xi, w);
// index[k*l + i] = k*l + i;
// }
// }
// int kk, ss;//kk(k‘),ss(s) in the paper
// // int i0,kk0,ss0,t;
// while (iter < max_iter)
// {
// PGmax_new = -INF;
// PGmin_new = INF;
// for (i=0; i<active_size; i++)
// {
// j = i+rand()%(active_size-i);
// swap(index[i], index[j]);
// }
// for (s=0; s<active_size; s++)
// {
// i = index[s];
// kk = i/l;//k‘
// ss = i%l;//s
// int y_s_ksign = calculate_y_k(y[ss], kk);//ysk‘
// feature_node * const xss = prob->x[ss];
// G = y_s_ksign*(sparse_operator::dot(w, xss)+b[kk])-1;
// //C = upper_bound[GETI(i)];
// //G += alpha[i]*diag[GETI(i)];
// PG = 0;
// double upper_bound = C*compute_nu_i_k(y[ss], kk, power);
// if (alpha[i] == 0)
// {
// if (G > PGmax_old)
// {
// active_size--;
// swap(index[s], index[active_size]);
// s--;
// // add begin
// // if(kk<nr_class-1)
// // for(t=s;t<active_size;t++)
// // {
// // i0 = index[t];
// // kk0 = i0/l;//k‘
// // ss0 = i0%l;//s
// // if(ss==ss0 && kk0>kk)
// // {
// // active_size--;
// // swap(index[t], index[active_size]);
// // n0++;
// // }
// // if(n0==(nr_class-1-kk0))break;
// // }
// //end
// continue;
// }
// else if (G < 0)
// PG = G;
// }
// else if (alpha[i] == upper_bound)
// {
// if (G < PGmin_old)
// {
// active_size--;
// swap(index[s], index[active_size]);
// s--;
// // add begin
// // if(kk>0)
// // { n0=0;
// // for(t=s;t<active_size;t++)
// // {
// // i0 = index[t];
// // kk0 = i0/l;//k‘
// // ss0 = i0%l;//s
// // if(ss==ss0 && kk0<kk)
// // {
// // active_size--;
// // swap(index[t], index[active_size]);
// // n0++;
// // }
// // if(n0==(nr_class-1-kk0))break;
// // }
// // }
// //end
// continue;
// }
// else if (G > 0)
// PG = G;
// }
// else
// PG = G;
// PGmax_new = max(PGmax_new, PG);
// PGmin_new = min(PGmin_new, PG);
// if(fabs(PG) > 1.0e-12)
// {
// double alpha_old = alpha[i];
// alpha[i] = min(max(alpha[i] - G/QD[ss], 0.0), upper_bound);
// d = (alpha[i] - alpha_old)*y_s_ksign;
// sparse_operator::axpy(d, xss, w);
// b[kk] += d;
// }
// }
// // printf("%d ",active_size);
// iter++;
// if(iter % 10 == 0)
// info(".");
// if(PGmax_new - PGmin_new <= eps)
// {
// if(active_size == (nr_class - 1)*l)
// break;
// else
// {
// active_size = (nr_class - 1)*l;
// info("*");
// PGmax_old = INF;
// PGmin_old = -INF;
// continue;
// }
// }
// PGmax_old = PGmax_new;
// PGmin_old = PGmin_new;
// if (PGmax_old <= 0)
// PGmax_old = INF;
// if (PGmin_old >= 0)
// PGmin_old = -INF;
// }
// info("\noptimization finished, #iter = %d\n",iter);
// // for(i=0;i<nr_class-1;i++) info("%.6f\n",b[i]);
// if (iter >= max_iter)
// info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// // calculate objective value
// //double v = 0;
// /*
// for(i=0; i<w_size; i++)
// v += w[i]*w[i];
// for(i=0; i<(nr_class - 1)*l; i++)
// {
// v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
// if(alpha[i] > 0)
// ++nSV;
// }
// info("Objective value = %lf\n",v/2);
// */
// int nSV = 0;
// for(i=0; i<l; i++)
// {
// double alpha_i = 0;
// for(k= 0; k<nr_class-1; k++)
// {
// alpha_i += alpha[k*l + i];
// }
// if(alpha_i > 0)
// ++nSV;
// }
// info("nSV = %d\n",nSV);
// delete [] QD;
// delete [] alpha;
// delete [] y;
// delete [] index;
// // for(i=0;i<prob->n;i++)
// // info("%.6f\n",w[i]);
// // for(i=0;i<nr_class-1;i++)
// // info("b%.6f\n",b[i]);
// }
static void solve_l2r_svor_full(const problem *prob, const parameter *param, double *w,
double *b, int *label, int nr_class)//cost refers to power
{
int i, j, k, s, iter = 0;
int l = prob->l;
int bigl = l * (nr_class-1);
schar *y = new schar[bigl];
double eps = param->eps;
double C = param->C;
// int w_size = prob->n;
double d, G;
double *QD = new double[bigl];
int max_iter = 1000;
int *index = new int[bigl];
double *alpha = new double[bigl];
int active_size = bigl;
// PG: projected gradient, for shrinking and stopping
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
int idx = 0;
for(i=0;i<l;i++)
{
feature_node * const xi = prob->x[i];
double xi_square = sparse_operator::nrm2_sq(xi);
for(k=0;k<nr_class -1;k++)
{
alpha[idx] = 0;
QD[idx] = xi_square+1;
y[idx] = (prob->y[i] <= label[k] ? -1 : 1);
index[idx] = idx;
idx++;
}
}
// memset(alpha,0,sizeof(double)*(bigl));
int kk, ss;//kk(k‘),ss(s) in the paper
// int i0,kk0,ss0,t;
while (iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for (i=0; i<active_size; i++)
{
j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
ss = i/(nr_class-1);//
kk = i%(nr_class-1);//s
feature_node * const xss = prob->x[ss];
G = y[i]*(sparse_operator::dot(w, xss)+b[kk])-1;
//C = upper_bound[GETI(i)];
//G += alpha[i]*diag[GETI(i)];
double violation = 0;
double upper_bound = C;
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == upper_bound)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(G) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), upper_bound);
d = y[i]*(alpha[i] - alpha_old);
sparse_operator::axpy(d, xss, w);
b[kk] += d;
}
}
// printf("%d ",active_size);
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == bigl)
break;
else
{
active_size = bigl;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n",iter);
// for(i=0;i<nr_class-1;i++) info("%.6f\n",b[i]);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
//double v = 0;
/*
for(i=0; i<w_size; i++)
v += w[i]*w[i];
for(i=0; i<(nr_class - 1)*l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
*/
int nSV = 0;
for(i=0; i<l; i++)
{
double alpha_i = 0;
for(k= 0; k<nr_class-1; k++)
{
alpha_i += alpha[i*(nr_class-1) + k];
}
if(alpha_i > 0)
++nSV;
}
info("nSV = %d\n",nSV);
delete [] QD;
delete [] alpha;
delete [] y;
delete [] index;
}
static void solve_l2r_npsvor_full(
const problem *prob, double *w, const parameter *param,
int k, int nk)
{
int l = prob->l;
double C1 = param->C1;
double C2 = param->C2;
double p = param->p;
double eps = param->eps;
int w_size = prob->n;
int i,i0, s, iter = 0;
double C, d, G;
double *QD = new double[l];
int max_iter = 1000;
int *index = new int[l+nk];
int *yk = new int[l+nk];
double *alpha = new double[l+nk];
double *y = prob->y;
int active_size = l+nk;
int *index0 = new int[l+nk];
// PG: projected gradient, for shrinking and stopping
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
// C2 = nk/(l-nk)*C2;
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
memset(alpha,0,sizeof(double)*(l+nk));
memset(w,0,sizeof(double)*w_size);
int j=0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
QD[i] = sparse_operator::nrm2_sq(xi);
index[i] = i;
index0[i] = i;
if(y[i]<k)
yk[i]=-1;
else if(y[i]==k)
{
yk[i] = -1;
yk[l+j] =1;
index[l+j] = l+j;
index0[l+j] = i;
j++;
}
else yk[i] = 1;
}
while (iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for (i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
i0 = index0[i];
feature_node * const xi = prob->x[i0];
G = yk[i]*sparse_operator::dot(w, xi);
if(y[i0]!=k)
{G += -1; C = C1;}
else
{G += p; C = C2;}
double violation = 0;
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == C)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(G) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i0], 0.0), C);
d = (alpha[i] - alpha_old)*yk[i];
sparse_operator::axpy(d, xi, w);
}
}
// printf("%d\n",nk);
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
// printf("%.3f ",max(PGmax_new,-PGmin_new));
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
j=0;
for(i=0; i<l; i++)
{
if(y[i]== k)
{
v += p*(alpha[i]+alpha[l+j]);
if((alpha[i]-alpha[l+j]) != 0)
nSV++;
j++;
}
else
{
v += - alpha[i];
if(alpha[i] != 0)
nSV++;
}
}
info("Objective value = %lf\n",v/2);
info(" %f \n",(double)nSV*100/l);
delete [] QD;
delete [] alpha;
delete [] index;
delete [] yk;
delete [] index0;
}
// static void solve_l2r_npsvor_full(
// const problem *prob, double *w, const parameter *param,
// int k, int nk)
// {
// int l = prob->l;
// double C1 = param->C1;
// double C2 = param->C2;
// double p = param->p;
// double eps = param->eps;
// int w_size = prob->n;
// int i,i0, s, iter = 0;
// double C, d, G;
// double *QD = new double[l];
// int max_iter = 1000;
// int *index = new int[l+nk];
// int *yk = new int[l+nk];
// double *alpha = new double[l+nk];
// double *y = prob->y;
// int active_size = l+nk;
// int *index0 = new int[l+nk];
// // PG: projected gradient, for shrinking and stopping
// double PG;
// double PGmax_old = INF;
// double PGmin_old = -INF;
// double PGmax_new, PGmin_new;
// // C2 = nk/(l-nk)*C2;
// // Initial alpha can be set here. Note that
// // 0 <= alpha[i] <= upper_bound[GETI(i)]
// memset(alpha,0,sizeof(double)*(l+nk));
// memset(w,0,sizeof(double)*w_size);
// int j=0;
// for(i=0; i<l; i++)
// {
// feature_node * const xi = prob->x[i];
// QD[i] = sparse_operator::nrm2_sq(xi);
// index[i] = i;
// index0[i] = i;
// if(y[i]<k)
// yk[i]=-1;
// else if(y[i]==k)
// {
// yk[i] = -1;
// yk[l+j] =1;
// index[l+j] = l+j;
// index0[l+j] = i;
// j++;
// }
// else yk[i] = 1;
// }
// while (iter < max_iter)
// {
// PGmax_new = -INF;
// PGmin_new = INF;
// for (i=0; i<active_size; i++)
// {
// int j = i+rand()%(active_size-i);
// swap(index[i], index[j]);
// }
// for (s=0; s<active_size; s++)
// {
// i = index[s];
// i0 = index0[i];
// feature_node * const xi = prob->x[i0];
// G = yk[i]*sparse_operator::dot(w, xi);
// if(y[i0]!=k)
// {G += -1; C = C1;}
// else
// {G += p; C = C2;}
// PG = 0;
// if (alpha[i] == 0)
// {
// if (G > PGmax_old)
// {
// active_size--;
// swap(index[s], index[active_size]);
// s--;
// continue;
// }
// else if (G < 0)
// PG = G;
// }
// else if (alpha[i] == C)
// {
// if (G < PGmin_old)
// {
// active_size--;
// swap(index[s], index[active_size]);
// s--;
// continue;
// }
// else if (G > 0)
// PG = G;
// }
// else
// PG = G;
// PGmax_new = max(PGmax_new, PG);
// PGmin_new = min(PGmin_new, PG);
// if(fabs(PG) > 1.0e-12)
// {
// double alpha_old = alpha[i];
// alpha[i] = min(max(alpha[i] - G/QD[i0], 0.0), C);
// d = (alpha[i] - alpha_old)*yk[i];
// sparse_operator::axpy(d, xi, w);
// }
// }
// // printf("%d\n",nk);
// iter++;
// // printf("%.3f ",max(PGmax_new,-PGmin_new));
// if(iter % 10 == 0)
// info(".");
// if(PGmax_new - PGmin_new <= eps)
// {
// if(active_size == l)
// break;
// else
// {
// active_size = l;
// info("*");
// PGmax_old = INF;
// PGmin_old = -INF;
// continue;
// }
// }
// PGmax_old = PGmax_new;
// PGmin_old = PGmin_new;
// if (PGmax_old <= 0)
// PGmax_old = INF;
// if (PGmin_old >= 0)
// PGmin_old = -INF;
// }
// info("\noptimization finished, #iter = %d\n",iter);
// if (iter >= max_iter)
// info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// // calculate objective value
// // calculate objective value
// double v = 0;
// int nSV = 0;
// for(i=0; i<w_size; i++)
// v += w[i]*w[i];
// v = 0.5*v;
// j=0;
// for(i=0; i<l; i++)
// {
// if(y[i]== k)
// {
// v += p*(alpha[i]+alpha[l+j]);
// if((alpha[i]-alpha[l+j]) != 0)
// nSV++;
// j++;
// }
// else
// {
// v += - alpha[i];
// if(alpha[i] != 0)
// nSV++;
// }
// }
// info("Objective value = %lf\n",v/2);
// info(" %f \n",(double)nSV*100/l);
// delete [] QD;
// delete [] alpha;
// delete [] index;
// delete [] yk;
// delete [] index0;
// }
int calculate_yki(double y, int k)
{
if(y>k){
return 1;
}else{
return -1;
}
}
double npsvor_obj_value(const problem *prob,double *w,double *alpha, double p, int k)
{
// calculate objective value
double v = 0;
double *y = prob->y;
int i, l = prob->l,w_size = prob->n;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
if(y[i]== k)
v += p*fabs(alpha[i]);
else
v += - alpha[i];
}
return v;
}
static void solve_l2r_npsvor(
const problem *prob, double *w, const parameter *param, int k)
{
int l = prob->l;
double C1 = param->C1;
double C2 = param->C2;
double p = param->p;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
int max_iter = 1000;
int active_size = l;
int *index = new int[l];
double *obj_value = new double[max_iter];
double *T = new double[max_iter];
double d, G;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double *alpha = new double[l];
double *QD = new double[l];
double *y = prob->y;
clock_t start, stop;
start=clock();
// Initial beta can be set here. Note that
memset(alpha,0,sizeof(double)*l);
memset(w,0,sizeof(double)*w_size);
// printf("%.3f %.3f\n",C1,C2);
// int nk=0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
QD[i] = sparse_operator::nrm2_sq(xi);
// sparse_operator::axpy(beta[i], xi, w);
index[i] = i;
// if(y[i]==k)
// nk++;
}
// p = (double)nk/l*p;
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
i = index[s];
int yki = calculate_yki(y[i], k);//ysk‘
feature_node * const xi = prob->x[i];
double violation = 0;
if(y[i]!= k)
{
G = yki*sparse_operator::dot(w, xi) -1;
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == C2)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
// PGmax_new = max(PGmax_new, PG);
// PGmin_new = min(PGmin_new, PG);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C2);
d = (alpha[i] - alpha_old)*yki;
sparse_operator::axpy(d, xi, w);
}
}
else
{
G = yki*sparse_operator::dot(w, xi);
double Gp = G+p;
double Gn = G-p;
if(alpha[i] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old && Gn<-Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] >= C1)
{
if(Gp > 0)
violation = Gp;
else if(Gp < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] <= -C1)
{
if(Gn < 0)
violation = -Gn;
else if(Gn > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < QD[i]*alpha[i])
d = -Gp/QD[i];
else if(Gn > QD[i]*alpha[i])
d = -Gn/QD[i];
else
d = -alpha[i];
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i]+d, -C1), C1);
d = yki*(alpha[i]-alpha_old);
sparse_operator::axpy(d, xi, w);
}
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
obj_value[iter] = npsvor_obj_value(prob,w,alpha,p,k);
stop=clock();
T[iter] = (double)(stop-start)/CLOCKS_PER_SEC;
iter++;
// printf("%.3f %.3f %.3f ",Gmax_old,Gnorm1_new,eps*Gnorm1_init);
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
if(y[i]== k)
v += p*fabs(alpha[i]);
else
v += - alpha[i];
if(alpha[i] != 0)
nSV++;
}
// info("Objective value = %lf\n", v);
// info("nSV = %d\n",nSV);
// for(i=0;i<iter;i++)
// printf("%.3f %.3f\n",(obj_value[i]-obj_value[iter-1])/fabs(obj_value[iter-1]),T[i]);
// printf("\n");
delete [] alpha;
delete [] QD;
delete [] index;
}
static void solve_l2r_npsvor_two(
const problem *prob, double *w, const parameter *param, double *QD)
{
int l = prob->l;
double C1 = param->C1;
double C2 = param->C2;
double p = param->p;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
int max_iter = 1000;
int active_size = l;
int *index = new int[l];
// double *obj_value = new double[max_iter];
double *T = new double[max_iter];
double d, G;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double *alpha = new double[l];
double *y = prob->y;
clock_t start, stop;
start=clock();
// Initial beta can be set here. Note that
memset(alpha,0,sizeof(double)*l);
memset(w,0,sizeof(double)*w_size);
// printf("%.3f %.3f\n",C1,C2);
// int nk=0;
for(i=0; i<l; i++)
index[i] = i;
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
i = index[s];
feature_node * const xi = prob->x[i];
double violation = 0;
if(y[i]==1)
{
G = y[i]*sparse_operator::dot(w, xi) -1;
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == C2)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
// PGmax_new = max(PGmax_new, PG);
// PGmin_new = min(PGmin_new, PG);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C2);
d = (alpha[i] - alpha_old)*y[i];
sparse_operator::axpy(d, xi, w);
}
}
else
{
G = y[i]*sparse_operator::dot(w, xi);
double Gp = G+p;
double Gn = G-p;
if(alpha[i] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old && Gn<-Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] >= C1)
{
if(Gp > 0)
violation = Gp;
else if(Gp < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] <= -C1)
{
if(Gn < 0)
violation = -Gn;
else if(Gn > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < QD[i]*alpha[i])
d = -Gp/QD[i];
else if(Gn > QD[i]*alpha[i])
d = -Gn/QD[i];
else
d = -alpha[i];
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i]+d, -C1), C1);
d = y[i]*(alpha[i]-alpha_old);
sparse_operator::axpy(d, xi, w);
}
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
// obj_value[iter] = npsvor_obj_value(prob,w,alpha,p,k);
stop=clock();
T[iter] = (double)(stop-start)/CLOCKS_PER_SEC;
iter++;
// printf("%.3f %.3f %.3f ",Gmax_old,Gnorm1_new,eps*Gnorm1_init);
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
if(y[i]== -1)
v += p*fabs(alpha[i]);
else
v += - alpha[i];
if(alpha[i] != 0)
nSV++;
}
// info("Objective value = %lf\n", v);
// info("nSV = %d\n",nSV);
// for(i=0;i<iter;i++)
// printf("%.3f %.3f\n",(obj_value[i]-obj_value[iter-1])/fabs(obj_value[iter-1]),T[i]);
// printf("\n");
delete [] alpha;
delete [] index;
}
static void sub_ramp_npsvor(
const problem *prob, double *w, const parameter *param, double *alpha, double *QD, int k)
{
int l = prob->l;
double C1 = param->C1;
double C2 = param->C2;
double p = param->p;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
int max_iter = 1000;
int active_size = l;
int *index = new int[l];
double *obj_value = new double[max_iter];
double *T = new double[max_iter];
double d, G;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double *y = prob->y;
// double *w0 = new double[l];
// memset(w0,0,sizeof(double)*w_size);
clock_t start, stop;
start=clock();
// Initial beta can be set here. Note that
// printf("%.3f %.3f\n",C1,C2);
// memset(w,0,sizeof(double)*w_size);
// memset(alpha,0,sizeof(double)*l);
for(i=0; i<l; i++)
{
// double yi = (double)calculate_yki(y[i], k);
index[i] = i;
// sparse_operator::axpy(yi*(alpha[i]+delta[i]), prob->x[i], w);
}
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
i = index[s];
int yki = calculate_yki(y[i], k);//ysk‘
feature_node * const xi = prob->x[i];
double violation = 0;
if(y[i]!= k)
{
G = yki*sparse_operator::dot(w, xi) -1;
if (alpha[i] == 0)
{
if (G > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
violation = -G;
}
else if (alpha[i] == C2)
{
if (G < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
violation = G;
}
else
violation = fabs(G);
// PGmax_new = max(PGmax_new, PG);
// PGmin_new = min(PGmin_new, PG);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), C2);
d = (alpha[i] - alpha_old)*yki;
sparse_operator::axpy(d, xi, w);
}
}
else
{
G = yki*sparse_operator::dot(w, xi);
double Gp = G+p;
double Gn = G-p;
if(alpha[i] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old && Gn<-Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] >= C1)
{
if(Gp > 0)
violation = Gp;
else if(Gp < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] <= -C1)
{
if(Gn < 0)
violation = -Gn;
else if(Gn > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(alpha[i] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < QD[i]*alpha[i])
d = -Gp/QD[i];
else if(Gn > QD[i]*alpha[i])
d = -Gn/QD[i];
else
d = -alpha[i];
if(fabs(violation) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i]+d, -C1), C1);
d = yki*(alpha[i]-alpha_old);
sparse_operator::axpy(d, xi, w);
}
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
obj_value[iter] = npsvor_obj_value(prob,w,alpha,p,k);
stop=clock();
T[iter] = (double)(stop-start)/CLOCKS_PER_SEC;
iter++;
// printf("%.3f %.3f %.3f ",Gmax_old,Gnorm1_new,eps*Gnorm1_init);
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
if(y[i]== k)
v += p*fabs(alpha[i]);
else
v += - alpha[i];
if(alpha[i] != 0)
nSV++;
}
// info("Objective value = %lf\n", v);
// info("nSV = %d\n",nSV);
// for(i=0;i<iter;i++)
// printf("%.3f %.3f\n",(obj_value[i]-obj_value[iter-1])/fabs(obj_value[iter-1]),T[i]);
// printf("\n");
// delete [] alpha;
// delete [] QD;
delete [] index;
}
static void ramp_npsvor(
const problem *prob, double *w, const parameter *param, int k)
{
int l = prob->l;
double C1 = param->C1;
double C2 = param->C2;
int w_size = prob->n;
double *alpha = new double[l];
double *delta = new double[l];
// double *w0= new double[w_size];
memset(alpha,0,sizeof(double)*l);
memset(delta,0,sizeof(double)*l);
memset(w,0,sizeof(double)*w_size);
int iter = 0, maxiter = 4;
double *y = prob->y;
double HB;
double hinge_s = -1, Ins_t = 2;
double *QD = new double[l];
int i;
for(i=0; i<l; i++)
QD[i] = sparse_operator::nrm2_sq(prob->x[i]);
while(iter<maxiter)
{
for(i=0; i<l; i++)
{
double yi =(double) calculate_yki(y[i], k);
HB = sparse_operator::dot(w, prob->x[i]);
if(yi*HB<hinge_s && y[i]!= k)
delta[i] = -C2;
else if(HB> Ins_t && y[i]== k)
delta[i] = -C1;
else if(HB< -Ins_t && y[i]== k)
delta[i] = C1;
else delta[i] = 0;
// info("%.1f\n ", delta[i]);
}
memset(w,0,sizeof(double)*w_size);
for(i=0; i<l; i++)
{ double yi =(double) calculate_yki(y[i], k);
sparse_operator::axpy(yi*(alpha[i]+delta[i]), prob->x[i], w);
}
sub_ramp_npsvor(prob, w, param, alpha, QD, k);
// if(r_norm<eps_pri)
// break;
iter++;
}
delete [] alpha;
delete [] delta;
delete [] QD;
}
double Update_W(const parameter *param, double *W, double *U,double *Z, int nr_class, int n)
{
int i,j;
double coef,s0=0,W_old;
double w_hat;
coef = n*param->rho/((1/param->C)+ n*param->rho);
for(i=0;i<n;i++)
{
W_old = W[i]; w_hat = 0;
for(j=0;j<nr_class-1;j++)
w_hat = w_hat + Z[j*n+i]+U[j*n+i];
W[i] = coef*w_hat/(nr_class-1);
s0 =s0+ (W[i] - W_old)*(W[i] - W_old);
}
// for(i=0;i<10;i++) info("%.3f ",W[i]);
return param->rho*sqrt(s0);
}
static void Update_U(double *U, double *Z,double *W, int nr_class, int n)
{
int i,j;
for(j=0;j<nr_class-1;j++)
{
for(i=0;i<n;i++)
{
U[j*n+i] = U[j*n+i] + Z[j*n+i]-W[i];
}
}
}
// //b is the returned value.
// double subproblem(const problem *prob, const parameter *param, double *w,//vector y is the processed labels
// double *z, double *u, double *alpha, double *nu, int j)
static void subproblem(const problem *prob, const parameter *param, double *W,
double *bias, double *Z, double *U, double *Alpha, int *Index, int *Active_size, int k)
{
// int l = prob->l;
int w_size = prob->n;
int i, s, iter = 0;
double d, G;//C,
double *QD = Malloc(double, prob->l);
int max_iter = 1000;
int *index = Malloc(int, prob->l);
//double *alpha = new double[l];
//schar *y = new schar[l];
// int active_size = prob->l;
int active_size = Active_size[k];
double power = param->wl;
double *y = Malloc(double, prob->l);
double *nu = Malloc(double, prob->l);
double b=bias[k];
double *z = Malloc(double, prob->n);
double *alpha = Malloc(double, prob->l);
// PG: projected gradient, for shrinking and stopping
double PG;
double PGmax_old = INF;
double PGmin_old = -INF;
double PGmax_new, PGmin_new;
/* // default solver_type: L2R_L2LOSS_SVC_DUAL
double diag[3] = {0.5/Cn, 0, 0.5/Cp};
double upper_bound[3] = {INF, 0, INF};
if(solver_type == L2R_L1LOSS_SVC_DUAL)
{
diag[0] = 0;
diag[2] = 0;
upper_bound[0] = Cn;
upper_bound[2] = Cp;
}
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
*/
// Initial alpha can be set here. Note that
// 0 <= alpha[i] <= upper_bound[GETI(i)]
//for(i=0; i<l; i++)
// alpha[i] = 0;
// int pos=0, neg=0;
for(i=0;i<prob->l;i++)
{
y[i] = calculate_y_k(prob->y[i], k);
nu[i] = compute_nu_i_k(prob->y[i], k, power);
// if(y[i]==1)
// pos = pos+1;
// else
// neg = neg+1;
}
// info("pos%d neg%d",pos,neg);
for(i=0; i<prob->n; i++){
z[i] = W[i] - U[k*w_size+i];
}
for(i=0; i<prob->l; i++)
{
//QD[i] = diag[GETI(i)];
alpha[i] = Alpha[k*prob->l+i];
feature_node * const xi = prob->x[i];
//QD[i] += y[i]*y[i]*(sparse_operator::nrm2_sq(xi)/rho+1);
QD[i] = sparse_operator::nrm2_sq(xi)/param->rho+1;
sparse_operator::axpy(y[i]*alpha[i]/param->rho, xi, z);
b += y[i]*alpha[i];
// index[i] = i;
index[i] = Index[k*prob->l+i];
}
while (iter < max_iter)
{
PGmax_new = -INF;
PGmin_new = INF;
for (i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for (s=0; s<active_size; s++)
{
i = index[s];
const double yi = y[i];
feature_node * const xi = prob->x[i];
G = yi*(sparse_operator::dot(z, xi) + b)-1;
//C = upper_bound[GETI(i)];
//G += alpha[i]*diag[GETI(i)];
PG = 0;
if (alpha[i] == 0)
{
if (G > PGmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G < 0)
PG = G;
}
else if (alpha[i] == param->C*nu[i])
{
if (G < PGmin_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
else if (G > 0)
PG = G;
}
else
PG = G;
PGmax_new = max(PGmax_new, PG);
PGmin_new = min(PGmin_new, PG);
if(fabs(PG) > 1.0e-12)
{
double alpha_old = alpha[i];
alpha[i] = min(max(alpha[i] - G/QD[i], 0.0), param->C*nu[i]);
d = (alpha[i] - alpha_old)*yi;
sparse_operator::axpy(d/param->rho, xi, z);
b += d;
}
}
iter++;
if(iter % 10 == 0)
info(".");
if(PGmax_new - PGmin_new <= param->eps)
{
if(active_size == prob->l)
break;
else
{
active_size = prob->l;
info("*");
PGmax_old = INF;
PGmin_old = -INF;
continue;
}
}
PGmax_old = PGmax_new;
PGmin_old = PGmin_new;
if (PGmax_old <= 0)
PGmax_old = INF;
if (PGmin_old >= 0)
PGmin_old = -INF;
}
bias[k] = b;
for(i=0;i<prob->l;i++)
{Alpha[k*prob->l+i] = alpha[i];
Index[k*prob->l+i] = index[i];
}
for(i=0;i<prob->n;i++)
Z[k*prob->n+i] = z[i];
Active_size[k]=active_size;
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 2 may be faster (also see FAQ)\n\n");
// calculate objective value
/*
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
/ v += w[i]*w[i];
for(i=0; i<l; i++)
{
v += alpha[i]*(alpha[i]*diag[GETI(i)] - 2);
if(alpha[i] > 0)
++nSV;
}
info("Objective value = %lf\n",v/2);
info("nSV = %d\n",nSV);
*/ delete [] alpha;
delete [] z;
delete [] QD;
delete [] y;
delete [] nu;
//delete [] alpha;
//delete [] y;
delete [] index;
}
double norm2_diff(double *Z, double *W, int nr_class, int n)//norm2-square
{
int i,j;
double ret = 0;
for(j=0;j<nr_class-1;j++)
{
for(i=0;i<n;i++)
ret = ret+ (Z[j*n+i]-W[i])*(Z[j*n+i]-W[i]);
}
return (sqrt(ret));
}
double norm2(double *Z, int n)//norm2-square
{
int j;
double ret = 0;
for(j=0;j<n;j++)
{
ret = ret + Z[j]*Z[j];
}
return (sqrt(ret));
}
static void solve_l2r_svor_admm(const problem *prob,const parameter *param, double *W,
double *b, int nr_class)
{
int i,j,iter=0;
int max_iter = 50;
// int max_nr_class = 16;//max number of classes
double *Z = Malloc(double, (nr_class-1)*prob->n);
double *U = Malloc(double, (nr_class-1)*prob->n);
double *alpha = Malloc(double, (nr_class-1)*prob->l);
double s_norm,r_norm;
double ABSTOL=10e-5, RELTOL=10e-5;
double eps_pri,eps_dual;
int *Index=Malloc(int, (nr_class-1)*prob->l);
int *Active_size = new int[nr_class-1];
memset(Z,0,sizeof(double)*((nr_class - 1)*prob->n));
memset(U,0,sizeof(double)*((nr_class - 1)*prob->n));
memset(W,0,sizeof(double)*(prob->n));
// memset(alpha,0,sizeof(double)*((nr_class - 1)*prob->l));
// for(i=0;i<prob->n;i++)
// {
// for(j=0;j<nr_class-1;j++)
// {
// Z[j*prob->n+i] = 0;
// U[j*prob->n+i] = 0;
// }
// W[i] = 0;
// }
for(i=0;i<(nr_class-1);i++)
for(j=0;j<prob->l;j++)
{
alpha[i*prob->l+j] = 0;
Index[i*prob->l+j] = j;
}
while(iter < max_iter)
{//ADMM
for(j = 0; j < nr_class - 1; j++)
{ if(iter==0) Active_size[j]=prob->l;
subproblem(prob, param, W, b, Z, U, alpha, Index, Active_size, j);
}
// for(i=0;i<10;i++) info("%.3f ",W[i]);
s_norm = Update_W(param, W, U,Z, nr_class, prob->n); //Average nr_class vectors Z to W
Update_U(U, Z, W, nr_class, prob->n);
r_norm = norm2_diff(Z, W, nr_class, prob->n);
eps_pri = sqrt(prob->n)*ABSTOL + RELTOL*max(norm2(W,prob->n)*(nr_class-1),
norm2(Z, prob->n*(nr_class-1)));
eps_dual = sqrt(prob->n)*ABSTOL + RELTOL*param->rho*norm2(U,prob->n*(nr_class-1));
if(r_norm<eps_pri && s_norm<eps_dual)
break;
iter++;
}
delete [] Z;
delete [] U;
delete [] alpha;
}
/*
* ------------------modification end---------------------------
*/
// A coordinate descent algorithm for
// L1-loss and L2-loss epsilon-SVR dual problem
//
// min_\beta 0.5\beta^T (Q + diag(lambda)) \beta - p \sum_{i=1}^l|\beta_i| + \sum_{i=1}^l yi\beta_i,
// s.t. -upper_bound_i <= \beta_i <= upper_bound_i,
//
// where Qij = xi^T xj and
// D is a diagonal matrix
//
// In L1-SVM case:
// upper_bound_i = C
// lambda_i = 0
// In L2-SVM case:
// upper_bound_i = INF
// lambda_i = 1/(2*C)
//
// Given:
// x, y, p, C
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Algorithm 4 of Ho and Lin, 2012
#undef GETI
#define GETI(i) (0)
// To support weights for instances, use GETI(i) (i)
static void solve_l2r_l1l2_svr(
const problem *prob, double *w, const parameter *param,
int solver_type)
{
int l = prob->l;
double C = param->C;
double p = param->p;
int w_size = prob->n;
double eps = param->eps;
int i, s, iter = 0;
int max_iter = 1000;
int active_size = l;
int *index = new int[l];
double d, G, H;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double *beta = new double[l];
double *QD = new double[l];
double *y = prob->y;
// L2R_L2LOSS_SVR_DUAL
double lambda[1], upper_bound[1];
lambda[0] = 0.5/C;
upper_bound[0] = INF;
if(solver_type == L2R_L1LOSS_SVR_DUAL)
{
lambda[0] = 0;
upper_bound[0] = C;
}
// Initial beta can be set here. Note that
// -upper_bound <= beta[i] <= upper_bound
for(i=0; i<l; i++)
beta[i] = 0;
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
QD[i] = sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(beta[i], xi, w);
index[i] = i;
}
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(i=0; i<active_size; i++)
{
int j = i+rand()%(active_size-i);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
i = index[s];
G = -y[i] + lambda[GETI(i)]*beta[i];
H = QD[i] + lambda[GETI(i)];
feature_node * const xi = prob->x[i];
G += sparse_operator::dot(w, xi);
double Gp = G+p;
double Gn = G-p;
double violation = 0;
if(beta[i] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old && Gn<-Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] >= upper_bound[GETI(i)])
{
if(Gp > 0)
violation = Gp;
else if(Gp < -Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] <= -upper_bound[GETI(i)])
{
if(Gn < 0)
violation = -Gn;
else if(Gn > Gmax_old)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(beta[i] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < H*beta[i])
d = -Gp/H;
else if(Gn > H*beta[i])
d = -Gn/H;
else
d = -beta[i];
if(fabs(d) < 1.0e-12)
continue;
double beta_old = beta[i];
beta[i] = min(max(beta[i]+d, -upper_bound[GETI(i)]), upper_bound[GETI(i)]);
d = beta[i]-beta_old;
if(d != 0)
sparse_operator::axpy(d, xi, w);
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
// printf("%.3f %.3f %.3f ",Gmax_old,Gnorm1_new,eps*Gnorm1_init);
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == l)
break;
else
{
active_size = l;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 11 may be faster\n\n");
// calculate objective value
double v = 0;
int nSV = 0;
for(i=0; i<w_size; i++)
v += w[i]*w[i];
v = 0.5*v;
for(i=0; i<l; i++)
{
v += p*fabs(beta[i]) - y[i]*beta[i] + 0.5*lambda[GETI(i)]*beta[i]*beta[i];
if(beta[i] != 0)
nSV++;
}
info("Objective value = %lf\n", v);
info("nSV = %d\n",nSV);
delete [] beta;
delete [] QD;
delete [] index;
}
// A coordinate descent algorithm for
// the dual of L2-regularized logistic regression problems
//
// min_\alpha 0.5(\alpha^T Q \alpha) + \sum \alpha_i log (\alpha_i) + (upper_bound_i - \alpha_i) log (upper_bound_i - \alpha_i),
// s.t. 0 <= \alpha_i <= upper_bound_i,
//
// where Qij = yi yj xi^T xj and
// upper_bound_i = Cp if y_i = 1
// upper_bound_i = Cn if y_i = -1
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Algorithm 5 of Yu et al., MLJ 2010
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
void solve_l2r_lr_dual(const problem *prob, double *w, double eps, double Cp, double Cn)
{
int l = prob->l;
int w_size = prob->n;
int i, s, iter = 0;
double *xTx = new double[l];
int max_iter = 1000;
int *index = new int[l];
double *alpha = new double[2*l]; // store alpha and C - alpha
schar *y = new schar[l];
int max_inner_iter = 100; // for inner Newton
double innereps = 1e-2;
double innereps_min = min(1e-8, eps);
double upper_bound[3] = {Cn, 0, Cp};
for(i=0; i<l; i++)
{
if(prob->y[i] > 0)
{
y[i] = +1;
}
else
{
y[i] = -1;
}
}
// Initial alpha can be set here. Note that
// 0 < alpha[i] < upper_bound[GETI(i)]
// alpha[2*i] + alpha[2*i+1] = upper_bound[GETI(i)]
for(i=0; i<l; i++)
{
alpha[2*i] = min(0.001*upper_bound[GETI(i)], 1e-8);
alpha[2*i+1] = upper_bound[GETI(i)] - alpha[2*i];
}
for(i=0; i<w_size; i++)
w[i] = 0;
for(i=0; i<l; i++)
{
feature_node * const xi = prob->x[i];
xTx[i] = sparse_operator::nrm2_sq(xi);
sparse_operator::axpy(y[i]*alpha[2*i], xi, w);
index[i] = i;
}
while (iter < max_iter)
{
for (i=0; i<l; i++)
{
int j = i+rand()%(l-i);
swap(index[i], index[j]);
}
int newton_iter = 0;
double Gmax = 0;
for (s=0; s<l; s++)
{
i = index[s];
const schar yi = y[i];
double C = upper_bound[GETI(i)];
double ywTx = 0, xisq = xTx[i];
feature_node * const xi = prob->x[i];
ywTx = yi*sparse_operator::dot(w, xi);
double a = xisq, b = ywTx;
// Decide to minimize g_1(z) or g_2(z)
int ind1 = 2*i, ind2 = 2*i+1, sign = 1;
if(0.5*a*(alpha[ind2]-alpha[ind1])+b < 0)
{
ind1 = 2*i+1;
ind2 = 2*i;
sign = -1;
}
// g_t(z) = z*log(z) + (C-z)*log(C-z) + 0.5a(z-alpha_old)^2 + sign*b(z-alpha_old)
double alpha_old = alpha[ind1];
double z = alpha_old;
if(C - z < 0.5 * C)
z = 0.1*z;
double gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
Gmax = max(Gmax, fabs(gp));
// Newton method on the sub-problem
const double eta = 0.1; // xi in the paper
int inner_iter = 0;
while (inner_iter <= max_inner_iter)
{
if(fabs(gp) < innereps)
break;
double gpp = a + C/(C-z)/z;
double tmpz = z - gp/gpp;
if(tmpz <= 0)
z *= eta;
else // tmpz in (0, C)
z = tmpz;
gp = a*(z-alpha_old)+sign*b+log(z/(C-z));
newton_iter++;
inner_iter++;
}
if(inner_iter > 0) // update w
{
alpha[ind1] = z;
alpha[ind2] = C-z;
sparse_operator::axpy(sign*(z-alpha_old)*yi, xi, w);
}
}
iter++;
if(iter % 10 == 0)
info(".");
if(Gmax < eps)
break;
if(newton_iter <= l/10)
innereps = max(innereps_min, 0.1*innereps);
}
info("\noptimization finished, #iter = %d\n",iter);
if (iter >= max_iter)
info("\nWARNING: reaching max number of iterations\nUsing -s 0 may be faster (also see FAQ)\n\n");
// calculate objective value
double v = 0;
for(i=0; i<w_size; i++)
v += w[i] * w[i];
v *= 0.5;
for(i=0; i<l; i++)
v += alpha[2*i] * log(alpha[2*i]) + alpha[2*i+1] * log(alpha[2*i+1])
- upper_bound[GETI(i)] * log(upper_bound[GETI(i)]);
info("Objective value = %lf\n", v);
delete [] xTx;
delete [] alpha;
delete [] y;
delete [] index;
}
// A coordinate descent algorithm for
// L1-regularized L2-loss support vector classification
//
// min_w \sum |wj| + C \sum max(0, 1-yi w^T xi)^2,
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Yuan et al. (2010) and appendix of LIBLINEAR paper, Fan et al. (2008)
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static void solve_l1r_l2_svc(
problem *prob_col, double *w, double eps,
double Cp, double Cn)
{
int l = prob_col->l;
int w_size = prob_col->n;
int j, s, iter = 0;
int max_iter = 1000;
int active_size = w_size;
int max_num_linesearch = 20;
double sigma = 0.01;
double d, G_loss, G, H;
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double d_old, d_diff;
double loss_old, loss_new;
double appxcond, cond;
int *index = new int[w_size];
schar *y = new schar[l];
double *b = new double[l]; // b = 1-ywTx
double *xj_sq = new double[w_size];
feature_node *x;
double C[3] = {Cn,0,Cp};
// Initial w can be set here.
for(j=0; j<w_size; j++)
w[j] = 0;
for(j=0; j<l; j++)
{
b[j] = 1;
if(prob_col->y[j] > 0)
y[j] = 1;
else
y[j] = -1;
}
for(j=0; j<w_size; j++)
{
index[j] = j;
xj_sq[j] = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
x->value *= y[ind]; // x->value stores yi*xij
double val = x->value;
b[ind] -= w[j]*val;
xj_sq[j] += C[GETI(ind)]*val*val;
x++;
}
}
while(iter < max_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
for(j=0; j<active_size; j++)
{
int i = j+rand()%(active_size-j);
swap(index[i], index[j]);
}
for(s=0; s<active_size; s++)
{
j = index[s];
G_loss = 0;
H = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
if(b[ind] > 0)
{
double val = x->value;
double tmp = C[GETI(ind)]*val;
G_loss -= tmp*b[ind];
H += tmp*val;
}
x++;
}
G_loss *= 2;
G = G_loss;
H *= 2;
H = max(H, 1e-12);
double Gp = G+1;
double Gn = G-1;
double violation = 0;
if(w[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(w[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
// obtain Newton direction d
if(Gp < H*w[j])
d = -Gp/H;
else if(Gn > H*w[j])
d = -Gn/H;
else
d = -w[j];
if(fabs(d) < 1.0e-12)
continue;
double delta = fabs(w[j]+d)-fabs(w[j]) + G*d;
d_old = 0;
int num_linesearch;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
d_diff = d_old - d;
cond = fabs(w[j]+d)-fabs(w[j]) - sigma*delta;
appxcond = xj_sq[j]*d*d + G_loss*d + cond;
if(appxcond <= 0)
{
x = prob_col->x[j];
sparse_operator::axpy(d_diff, x, b);
break;
}
if(num_linesearch == 0)
{
loss_old = 0;
loss_new = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
if(b[ind] > 0)
loss_old += C[GETI(ind)]*b[ind]*b[ind];
double b_new = b[ind] + d_diff*x->value;
b[ind] = b_new;
if(b_new > 0)
loss_new += C[GETI(ind)]*b_new*b_new;
x++;
}
}
else
{
loss_new = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
double b_new = b[ind] + d_diff*x->value;
b[ind] = b_new;
if(b_new > 0)
loss_new += C[GETI(ind)]*b_new*b_new;
x++;
}
}
cond = cond + loss_new - loss_old;
if(cond <= 0)
break;
else
{
d_old = d;
d *= 0.5;
delta *= 0.5;
}
}
w[j] += d;
// recompute b[] if line search takes too many steps
if(num_linesearch >= max_num_linesearch)
{
info("#");
for(int i=0; i<l; i++)
b[i] = 1;
for(int i=0; i<w_size; i++)
{
if(w[i]==0) continue;
x = prob_col->x[i];
sparse_operator::axpy(-w[i], x, b);
}
}
}
if(iter == 0)
Gnorm1_init = Gnorm1_new;
iter++;
if(iter % 10 == 0)
info(".");
if(Gnorm1_new <= eps*Gnorm1_init)
{
if(active_size == w_size)
break;
else
{
active_size = w_size;
info("*");
Gmax_old = INF;
continue;
}
}
Gmax_old = Gmax_new;
}
info("\noptimization finished, #iter = %d\n", iter);
if(iter >= max_iter)
info("\nWARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nnz = 0;
for(j=0; j<w_size; j++)
{
x = prob_col->x[j];
while(x->index != -1)
{
x->value *= prob_col->y[x->index-1]; // restore x->value
x++;
}
if(w[j] != 0)
{
v += fabs(w[j]);
nnz++;
}
}
for(j=0; j<l; j++)
if(b[j] > 0)
v += C[GETI(j)]*b[j]*b[j];
info("Objective value = %lf\n", v);
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
delete [] index;
delete [] y;
delete [] b;
delete [] xj_sq;
}
// A coordinate descent algorithm for
// L1-regularized logistic regression problems
//
// min_w \sum |wj| + C \sum log(1+exp(-yi w^T xi)),
//
// Given:
// x, y, Cp, Cn
// eps is the stopping tolerance
//
// solution will be put in w
//
// See Yuan et al. (2011) and appendix of LIBLINEAR paper, Fan et al. (2008)
#undef GETI
#define GETI(i) (y[i]+1)
// To support weights for instances, use GETI(i) (i)
static void solve_l1r_lr(
const problem *prob_col, double *w, double eps,
double Cp, double Cn)
{
int l = prob_col->l;
int w_size = prob_col->n;
int j, s, newton_iter=0, iter=0;
int max_newton_iter = 100;
int max_iter = 1000;
int max_num_linesearch = 20;
int active_size;
int QP_active_size;
double nu = 1e-12;
double inner_eps = 1;
double sigma = 0.01;
double w_norm, w_norm_new;
double z, G, H;
double Gnorm1_init = -1.0; // Gnorm1_init is initialized at the first iteration
double Gmax_old = INF;
double Gmax_new, Gnorm1_new;
double QP_Gmax_old = INF;
double QP_Gmax_new, QP_Gnorm1_new;
double delta, negsum_xTd, cond;
int *index = new int[w_size];
schar *y = new schar[l];
double *Hdiag = new double[w_size];
double *Grad = new double[w_size];
double *wpd = new double[w_size];
double *xjneg_sum = new double[w_size];
double *xTd = new double[l];
double *exp_wTx = new double[l];
double *exp_wTx_new = new double[l];
double *tau = new double[l];
double *D = new double[l];
feature_node *x;
double C[3] = {Cn,0,Cp};
// Initial w can be set here.
for(j=0; j<w_size; j++)
w[j] = 0;
for(j=0; j<l; j++)
{
if(prob_col->y[j] > 0)
y[j] = 1;
else
y[j] = -1;
exp_wTx[j] = 0;
}
w_norm = 0;
for(j=0; j<w_size; j++)
{
w_norm += fabs(w[j]);
wpd[j] = w[j];
index[j] = j;
xjneg_sum[j] = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
double val = x->value;
exp_wTx[ind] += w[j]*val;
if(y[ind] == -1)
xjneg_sum[j] += C[GETI(ind)]*val;
x++;
}
}
for(j=0; j<l; j++)
{
exp_wTx[j] = exp(exp_wTx[j]);
double tau_tmp = 1/(1+exp_wTx[j]);
tau[j] = C[GETI(j)]*tau_tmp;
D[j] = C[GETI(j)]*exp_wTx[j]*tau_tmp*tau_tmp;
}
while(newton_iter < max_newton_iter)
{
Gmax_new = 0;
Gnorm1_new = 0;
active_size = w_size;
for(s=0; s<active_size; s++)
{
j = index[s];
Hdiag[j] = nu;
Grad[j] = 0;
double tmp = 0;
x = prob_col->x[j];
while(x->index != -1)
{
int ind = x->index-1;
Hdiag[j] += x->value*x->value*D[ind];
tmp += x->value*tau[ind];
x++;
}
Grad[j] = -tmp + xjneg_sum[j];
double Gp = Grad[j]+1;
double Gn = Grad[j]-1;
double violation = 0;
if(w[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
//outer-level shrinking
else if(Gp>Gmax_old/l && Gn<-Gmax_old/l)
{
active_size--;
swap(index[s], index[active_size]);
s--;
continue;
}
}
else if(w[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
Gmax_new = max(Gmax_new, violation);
Gnorm1_new += violation;
}
if(newton_iter == 0)
Gnorm1_init = Gnorm1_new;
if(Gnorm1_new <= eps*Gnorm1_init)
break;
iter = 0;
QP_Gmax_old = INF;
QP_active_size = active_size;
for(int i=0; i<l; i++)
xTd[i] = 0;
// optimize QP over wpd
while(iter < max_iter)
{
QP_Gmax_new = 0;
QP_Gnorm1_new = 0;
for(j=0; j<QP_active_size; j++)
{
int i = j+rand()%(QP_active_size-j);
swap(index[i], index[j]);
}
for(s=0; s<QP_active_size; s++)
{
j = index[s];
H = Hdiag[j];
x = prob_col->x[j];
G = Grad[j] + (wpd[j]-w[j])*nu;
while(x->index != -1)
{
int ind = x->index-1;
G += x->value*D[ind]*xTd[ind];
x++;
}
double Gp = G+1;
double Gn = G-1;
double violation = 0;
if(wpd[j] == 0)
{
if(Gp < 0)
violation = -Gp;
else if(Gn > 0)
violation = Gn;
//inner-level shrinking
else if(Gp>QP_Gmax_old/l && Gn<-QP_Gmax_old/l)
{
QP_active_size--;
swap(index[s], index[QP_active_size]);
s--;
continue;
}
}
else if(wpd[j] > 0)
violation = fabs(Gp);
else
violation = fabs(Gn);
QP_Gmax_new = max(QP_Gmax_new, violation);
QP_Gnorm1_new += violation;
// obtain solution of one-variable problem
if(Gp < H*wpd[j])
z = -Gp/H;
else if(Gn > H*wpd[j])
z = -Gn/H;
else
z = -wpd[j];
if(fabs(z) < 1.0e-12)
continue;
z = min(max(z,-10.0),10.0);
wpd[j] += z;
x = prob_col->x[j];
sparse_operator::axpy(z, x, xTd);
}
iter++;
if(QP_Gnorm1_new <= inner_eps*Gnorm1_init)
{
//inner stopping
if(QP_active_size == active_size)
break;
//active set reactivation
else
{
QP_active_size = active_size;
QP_Gmax_old = INF;
continue;
}
}
QP_Gmax_old = QP_Gmax_new;
}
if(iter >= max_iter)
info("WARNING: reaching max number of inner iterations\n");
delta = 0;
w_norm_new = 0;
for(j=0; j<w_size; j++)
{
delta += Grad[j]*(wpd[j]-w[j]);
if(wpd[j] != 0)
w_norm_new += fabs(wpd[j]);
}
delta += (w_norm_new-w_norm);
negsum_xTd = 0;
for(int i=0; i<l; i++)
if(y[i] == -1)
negsum_xTd += C[GETI(i)]*xTd[i];
int num_linesearch;
for(num_linesearch=0; num_linesearch < max_num_linesearch; num_linesearch++)
{
cond = w_norm_new - w_norm + negsum_xTd - sigma*delta;
for(int i=0; i<l; i++)
{
double exp_xTd = exp(xTd[i]);
exp_wTx_new[i] = exp_wTx[i]*exp_xTd;
cond += C[GETI(i)]*log((1+exp_wTx_new[i])/(exp_xTd+exp_wTx_new[i]));
}
if(cond <= 0)
{
w_norm = w_norm_new;
for(j=0; j<w_size; j++)
w[j] = wpd[j];
for(int i=0; i<l; i++)
{
exp_wTx[i] = exp_wTx_new[i];
double tau_tmp = 1/(1+exp_wTx[i]);
tau[i] = C[GETI(i)]*tau_tmp;
D[i] = C[GETI(i)]*exp_wTx[i]*tau_tmp*tau_tmp;
}
break;
}
else
{
w_norm_new = 0;
for(j=0; j<w_size; j++)
{
wpd[j] = (w[j]+wpd[j])*0.5;
if(wpd[j] != 0)
w_norm_new += fabs(wpd[j]);
}
delta *= 0.5;
negsum_xTd *= 0.5;
for(int i=0; i<l; i++)
xTd[i] *= 0.5;
}
}
// Recompute some info due to too many line search steps
if(num_linesearch >= max_num_linesearch)
{
for(int i=0; i<l; i++)
exp_wTx[i] = 0;
for(int i=0; i<w_size; i++)
{
if(w[i]==0) continue;
x = prob_col->x[i];
sparse_operator::axpy(w[i], x, exp_wTx);
}
for(int i=0; i<l; i++)
exp_wTx[i] = exp(exp_wTx[i]);
}
if(iter == 1)
inner_eps *= 0.25;
newton_iter++;
Gmax_old = Gmax_new;
info("iter %3d #CD cycles %d\n", newton_iter, iter);
}
info("=========================\n");
info("optimization finished, #iter = %d\n", newton_iter);
if(newton_iter >= max_newton_iter)
info("WARNING: reaching max number of iterations\n");
// calculate objective value
double v = 0;
int nnz = 0;
for(j=0; j<w_size; j++)
if(w[j] != 0)
{
v += fabs(w[j]);
nnz++;
}
for(j=0; j<l; j++)
if(y[j] == 1)
v += C[GETI(j)]*log(1+1/exp_wTx[j]);
else
v += C[GETI(j)]*log(1+exp_wTx[j]);
info("Objective value = %lf\n", v);
info("#nonzeros/#features = %d/%d\n", nnz, w_size);
delete [] index;
delete [] y;
delete [] Hdiag;
delete [] Grad;
delete [] wpd;
delete [] xjneg_sum;
delete [] xTd;
delete [] exp_wTx;
delete [] exp_wTx_new;
delete [] tau;
delete [] D;
}
// transpose matrix X from row format to column format
static void transpose(const problem *prob, feature_node **x_space_ret, problem *prob_col)
{
int i;
int l = prob->l;
int n = prob->n;
size_t nnz = 0;
size_t *col_ptr = new size_t [n+1];
feature_node *x_space;
prob_col->l = l;
prob_col->n = n;
prob_col->y = new double[l];
prob_col->x = new feature_node*[n];
for(i=0; i<l; i++)
prob_col->y[i] = prob->y[i];
for(i=0; i<n+1; i++)
col_ptr[i] = 0;
for(i=0; i<l; i++)
{
feature_node *x = prob->x[i];
while(x->index != -1)
{
nnz++;
col_ptr[x->index]++;
x++;
}
}
for(i=1; i<n+1; i++)
col_ptr[i] += col_ptr[i-1] + 1;
x_space = new feature_node[nnz+n];
for(i=0; i<n; i++)
prob_col->x[i] = &x_space[col_ptr[i]];
for(i=0; i<l; i++)
{
feature_node *x = prob->x[i];
while(x->index != -1)
{
int ind = x->index-1;
x_space[col_ptr[ind]].index = i+1; // starts from 1
x_space[col_ptr[ind]].value = x->value;
col_ptr[ind]++;
x++;
}
}
for(i=0; i<n; i++)
x_space[col_ptr[i]].index = -1;
*x_space_ret = x_space;
delete [] col_ptr;
}
// label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
// perm, length l, must be allocated before calling this subroutine
static void group_classes(const problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
{
int l = prob->l;
int max_nr_class = 16;
int nr_class = 0;
int *label = Malloc(int,max_nr_class);
int *count = Malloc(int,max_nr_class);
int *data_label = Malloc(int,l);
int i;
for(i=0;i<l;i++)
{
int this_label = (int)prob->y[i];
int j;
for(j=0;j<nr_class;j++)
{
if(this_label == label[j])
{
++count[j];
break;
}
}
data_label[i] = j;
if(j == nr_class)
{
if(nr_class == max_nr_class)
{
max_nr_class *= 2;
label = (int *)realloc(label,max_nr_class*sizeof(int));
count = (int *)realloc(count,max_nr_class*sizeof(int));
}
label[nr_class] = this_label;
count[nr_class] = 1;
++nr_class;
}
}
//
// Labels are ordered by their first occurrence in the training set.
// However, for two-class sets with -1/+1 labels and -1 appears first,
// we swap labels to ensure that internally the binary SVM has positive data corresponding to the +1 instances.
//
if (nr_class == 2 && label[0] == -1 && label[1] == 1)
{
swap(label[0],label[1]);
swap(count[0],count[1]);
for(i=0;i<l;i++)
{
if(data_label[i] == 0)
data_label[i] = 1;
else
data_label[i] = 0;
}
}
int *start = Malloc(int,nr_class);
start[0] = 0;
for(i=1;i<nr_class;i++)
start[i] = start[i-1]+count[i-1];
for(i=0;i<l;i++)
{
perm[start[data_label[i]]] = i;
++start[data_label[i]];
}
start[0] = 0;
for(i=1;i<nr_class;i++)
start[i] = start[i-1]+count[i-1];
*nr_class_ret = nr_class;
*label_ret = label;
*start_ret = start;
*count_ret = count;
free(data_label);
}
/*My modification begin*/
// static void train_one_svor(const problem *prob, const parameter *param, double *w, double *b, double C)
// {
// //inner and outer tolerances for TRON
// double eps = param->eps;
// double wl = param->wl;
// //clock_t start, stop;
// //start=clock();
// solve_l2r_svor(prob, w, b, eps, C, wl)
// //solve_l2r_svor(&sub_prob, param, model_->w, model_->b, param->C,nr_class);
// }
/*My modification end*/
static void train_one(const problem *prob, const parameter *param, double *w, double Cp, double Cn)
{
//inner and outer tolerances for TRON
double eps = param->eps;
double eps_cg = 0.1;
if(param->init_sol != NULL)
eps_cg = 0.5;
int pos = 0;
int neg = 0;
for(int i=0;i<prob->l;i++)
if(prob->y[i] > 0)
pos++;
neg = prob->l - pos;
double primal_solver_tol = eps*max(min(pos,neg), 1)/prob->l;
function *fun_obj=NULL;
/*
* -------------------my modification begin---------------------------
*/
// double para_rho = param->rho;
// double para_wl = param->wl;
//clock_t start, stop;
//start=clock();
/*
* -------------------my modification end---------------------------
*/
//fprintf(stderr, "My test0\n");
switch(param->solver_type)
{
/*
* -------------------my modification begin---------------------------
*/
// case L2R_SVOR:
// {
// // //fprintf(stderr, "My test1\n");
// // if(Cp != Cn)//Cp and Cn are the same in this case Cp = Cn = C
// // fprintf(stderr, "ERROR: Cp and Cn should be the same in this case\n");
// solve_l2r_svor(prob, w, b, eps, C, para_wl)
// break;
// }
/*
* -------------------my modification end---------------------------
*/
case L2R_LR:
{
double *C = new double[prob->l];
for(int i = 0; i < prob->l; i++)
{
if(prob->y[i] > 0)
C[i] = Cp;
else
C[i] = Cn;
}
fun_obj=new l2r_lr_fun(prob, C);
TRON tron_obj(fun_obj, primal_solver_tol, eps_cg);
tron_obj.set_print_string(liblinear_print_string);
tron_obj.tron(w);
delete fun_obj;
delete[] C;
break;
}
case L2R_L2LOSS_SVC:
{
double *C = new double[prob->l];
for(int i = 0; i < prob->l; i++)
{
if(prob->y[i] > 0)
C[i] = Cp;
else
C[i] = Cn;
}
fun_obj=new l2r_l2_svc_fun(prob, C);
TRON tron_obj(fun_obj, primal_solver_tol, eps_cg);
tron_obj.set_print_string(liblinear_print_string);
tron_obj.tron(w);
delete fun_obj;
delete[] C;
break;
}
case L2R_L2LOSS_SVC_DUAL:
solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L2LOSS_SVC_DUAL);
break;
case L2R_L1LOSS_SVC_DUAL:
// solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
solve_l2r_l1l2_svmop(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
break;
case L2R_SVMOP:
// solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
solve_l2r_l1l2_svmop(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
break;
case L1R_L2LOSS_SVC:
{
problem prob_col;
feature_node *x_space = NULL;
transpose(prob, &x_space ,&prob_col);
solve_l1r_l2_svc(&prob_col, w, primal_solver_tol, Cp, Cn);
delete [] prob_col.y;
delete [] prob_col.x;
delete [] x_space;
break;
}
case L1R_LR:
{
problem prob_col;
feature_node *x_space = NULL;
transpose(prob, &x_space ,&prob_col);
solve_l1r_lr(&prob_col, w, primal_solver_tol, Cp, Cn);
delete [] prob_col.y;
delete [] prob_col.x;
delete [] x_space;
break;
}
case L2R_LR_DUAL:
solve_l2r_lr_dual(prob, w, eps, Cp, Cn);
break;
case L2R_L2LOSS_SVR:
{
double *C = new double[prob->l];
for(int i = 0; i < prob->l; i++)
C[i] = param->C;
fun_obj=new l2r_l2_svr_fun(prob, C, param->p);
TRON tron_obj(fun_obj, param->eps);
tron_obj.set_print_string(liblinear_print_string);
tron_obj.tron(w);
delete fun_obj;
delete[] C;
break;
}
case L2R_L1LOSS_SVR_DUAL:
solve_l2r_l1l2_svr(prob, w, param, L2R_L1LOSS_SVR_DUAL);
break;
case L2R_L2LOSS_SVR_DUAL:
solve_l2r_l1l2_svr(prob, w, param, L2R_L2LOSS_SVR_DUAL);
break;
default:
fprintf(stderr, "ERROR: unknown solver_type\n");
break;
}
/*
* -------------------my modification end---------------------------
*/
//stop=clock();
//printf("Training Time:%f seconds.\n", (double)(stop-start)/CLOCKS_PER_SEC);
/*
* -------------------my modification end---------------------------
*/
}
// Calculate the initial C for parameter selection
static double calc_start_C(const problem *prob, const parameter *param)
{
int i;
double xTx,max_xTx;
max_xTx = 0;
for(i=0; i<prob->l; i++)
{
xTx = 0;
feature_node *xi=prob->x[i];
while(xi->index != -1)
{
double val = xi->value;
xTx += val*val;
xi++;
}
if(xTx > max_xTx)
max_xTx = xTx;
}
double min_C = 1.0;
if(param->solver_type == L2R_LR)
min_C = 1.0 / (prob->l * max_xTx);
else if(param->solver_type == L2R_L2LOSS_SVC)
min_C = 1.0 / (2 * prob->l * max_xTx);
return pow( 2, floor(log(min_C) / log(2.0)) );
}
//
// Interface functions
//
model* train(const problem *prob, const parameter *param)
{
int i,j;
int l = prob->l;
int n = prob->n;
int w_size = prob->n;
model *model_ = Malloc(model,1);
if(prob->bias>=0)
model_->nr_feature=n-1;
else
model_->nr_feature=n;
model_->param = *param;
model_->bias = prob->bias;
if(check_regression_model(model_))
{
int nr_class;
int *label = NULL;
int *start = NULL;
int *count = NULL;
int *perm = Malloc(int,l);
model_->w = Malloc(double, w_size);
group_classes(prob,&nr_class,&label,&start,&count,perm);
for(i=0; i<w_size; i++)
model_->w[i] = 0;
model_->nr_class=nr_class;
model_->label = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
model_->label[i] = label[i];
for(i=0;i<nr_class-1;i++)
for(j=i+1;j< nr_class;j++)
if(model_->label[i] > model_->label[j])
swap(model_->label[i],model_->label[j]);
problem sub_prob;
sub_prob.l = l;
sub_prob.n = n;
sub_prob.x = Malloc(feature_node *,sub_prob.l);
sub_prob.y = Malloc(double,sub_prob.l);
for(int k=0; k<sub_prob.l; k++)
{sub_prob.x[k] = prob->x[perm[k]];
sub_prob.y[k] = (prob->y[perm[k]]-1)/(nr_class -1) - 0.5;}
train_one(&sub_prob, param, model_->w, 0, 0);
}
else
{
int nr_class;
int *label = NULL;
int *start = NULL;
int *count = NULL;
int *perm = Malloc(int,l);
// group training data of the same class
group_classes(prob,&nr_class,&label,&start,&count,perm);
model_->nr_class=nr_class;
model_->label = Malloc(int,nr_class);
for(i=0;i<nr_class;i++)
model_->label[i] = label[i];
// calculate weighted C
double *weighted_C = Malloc(double, nr_class);
for(i=0;i<nr_class;i++)
weighted_C[i] = param->C;
for(i=0;i<param->nr_weight;i++)
{
for(j=0;j<nr_class;j++)
if(param->weight_label[i] == label[j])
break;
if(j == nr_class)
fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
else
weighted_C[j] *= param->weight[i];
}
// constructing the subproblem
feature_node **x = Malloc(feature_node *,l);
for(i=0;i<l;i++)
x[i] = prob->x[perm[i]];
int k;
problem sub_prob;
sub_prob.l = l;
sub_prob.n = n;
sub_prob.x = Malloc(feature_node *,sub_prob.l);
sub_prob.y = Malloc(double,sub_prob.l);
for(k=0; k<sub_prob.l; k++)
sub_prob.x[k] = x[k];
// multi-class svm by Crammer and Singer
if(param->solver_type == MCSVM_CS)
{
model_->w=Malloc(double, n*nr_class);
for(i=0;i<nr_class;i++)
for(j=start[i];j<start[i]+count[i];j++)
sub_prob.y[j] = i;
Solver_MCSVM_CS Solver(&sub_prob, nr_class, weighted_C, param->eps);
Solver.Solve(model_->w);
}
else if(nr_class == 2 && model_->param.solver_type!= L2R_SVOR &&
model_->param.solver_type != L2R_NPSVOR && model_->param.solver_type!= L2R_SVMOP) /*My modification*/
{
model_->w=Malloc(double, w_size);
int e0 = start[0]+count[0];
k=0;
for(; k<e0; k++)
sub_prob.y[k] = +1;
for(; k<sub_prob.l; k++)
sub_prob.y[k] = -1;
if(param->init_sol != NULL)
for(i=0;i<w_size;i++)
model_->w[i] = param->init_sol[i];
else
for(i=0;i<w_size;i++)
model_->w[i] = 0;
train_one(&sub_prob, param, model_->w, weighted_C[0], weighted_C[1]);
free(sub_prob.y);
}
else if(model_->param.solver_type== L2R_SVOR) //My modification begin
{
// if(nr_class == 2)
// for(i=0;i<prob->l;i++)
// if(subprob->y[i]== model_->label[1])
// subprob->y[i]==1;
// else
// subprob->y[i]= 2;
info("%d %d\n",model_->label[0],model_->label[1]);
model_->w=Malloc(double, w_size);
model_->b=Malloc(double, nr_class-1); //add
for(i=0; i< l; i++)
sub_prob.y[i] = prob->y[perm[i]];
for(i=0;i<nr_class-1;i++) //add
model_->b[i] = 0; //add
if(param->init_sol != NULL)
{for(i=0;i<w_size;i++)
model_->w[i] = param->init_sol[i];
}
else
{
for(i=0;i<w_size;i++)
model_->w[i] = 0;
}
info("%g\n",param->svor);
for(i=0;i<nr_class-1;i++)
for(j=i+1;j< nr_class;j++)
if(model_->label[i] > model_->label[j])
swap(model_->label[i],model_->label[j]);
if(param->svor==1){
solve_l2r_svor(&sub_prob, param, model_->w, model_->b, model_->label, nr_class);
}
else if(param->svor==2)
solve_l2r_svor_admm(&sub_prob, param, model_->w, model_->b, nr_class);
else if(param->svor==3)
{solve_l2r_svor_full(&sub_prob, param, model_->w, model_->b, model_->label, nr_class);}
for(i=0;i<nr_class-1;i++)
info("b %.6f\n",model_->b[i]);
} // My modification end
else if (model_->param.solver_type== L2R_NPSVOR)
{
for(i=0; i< l; i++)
sub_prob.y[i] = prob->y[perm[i]];
for(i=0;i<nr_class-1;i++)
for(j=i+1;j< nr_class;j++)
if(model_->label[i] > model_->label[j])
swap(model_->label[i],model_->label[j]);
model_->w=Malloc(double, w_size*nr_class);
double *w=Malloc(double, w_size);
for(i=0;i<nr_class;i++)
{
if(param->init_sol != NULL)
for(j=0;j<w_size;j++)
w[j] = param->init_sol[j*nr_class+i];
else
for(j=0;j<w_size;j++)
w[j] = 0;
if(param->npsvor==1){
solve_l2r_npsvor(&sub_prob, w, param, model_->label[i]);
//ramp_npsvor(&sub_prob, w, param, model_->label[i]);
}
else if(param->npsvor==2)
{
int nk = 0;
for(j=0;j<sub_prob.l;j++)
if(sub_prob.y[j]== model_->label[i])
nk++;
solve_l2r_npsvor_full(&sub_prob, w, param, model_->label[i],nk);
}
else if(param->npsvor==3)
{
//solve_l2r_npsvor(&sub_prob, w, param, model_->label[i]);
ramp_npsvor(&sub_prob, w, param, model_->label[i]);
}
else if(param->npsvor==4)
{
//solve_l2r_npsvor(&sub_prob, w, param, model_->label[i]);
double *w1 = new double[w_size];
double *w2 = new double[w_size];
double *QD = new double[l];
memset(w1,0,sizeof(double)*w_size);
memset(w2,0,sizeof(double)*w_size);
memset(QD,0,sizeof(double)*l);
if(i<nr_class-1)
{
for(j=0; j<l; j++)
{
feature_node * const xi = sub_prob.x[j];
QD[j] = sparse_operator::nrm2_sq(xi);
}
for(j=0; j< l; j++)
if(prob->y[perm[j]]>model_->label[i])
sub_prob.y[j] = 1;
else sub_prob.y[j] = -1;
solve_l2r_npsvor_two(&sub_prob, w1, param,QD);
for(j=0; j< l; j++)
if(prob->y[perm[j]] > model_->label[i])
sub_prob.y[j] = -1;
else sub_prob.y[j] = 1;
solve_l2r_npsvor_two(&sub_prob, w2, param,QD);
}
for(j=0;j<w_size;j++)
w[j] = w1[j]-w2[j];
}
for(int j=0;j<w_size;j++)
model_->w[j*nr_class+i] = w[j];
}
}
else if (model_->param.solver_type== L2R_SVMOP)
{
// for(i=0; i< l; i++)
// sub_prob.y[i] = prob->y[perm[i]];
for(i=0;i<nr_class-1;i++)
for(j=i+1;j< nr_class;j++)
if(model_->label[i] > model_->label[j])
swap(model_->label[i],model_->label[j]);
model_->w=Malloc(double, w_size*(nr_class-1));
double *w=Malloc(double, w_size);
for(i=0;i<nr_class-1;i++)
{
for(int s=0;s<prob->l;s++)
if(prob->y[perm[s]]> model_->label[i])
sub_prob.y[s]=1;
else
sub_prob.y[s]= -1;
if(param->init_sol != NULL)
for(j=0;j<w_size;j++)
w[j] = param->init_sol[j*(nr_class-1)+i];
else
for(j=0;j<w_size;j++)
w[j] = 0;
train_one(&sub_prob, param, w, weighted_C[i], param->C);
for(int j=0;j<w_size;j++)
{
model_->w[j*(nr_class-1)+i] = w[j];
}
}
free(w);
free(sub_prob.y);
}
else
{
model_->w=Malloc(double, w_size*nr_class);
double *w=Malloc(double, w_size);
for(i=0;i<nr_class;i++)
{
int si = start[i];
int ei = si+count[i];
k=0;
for(; k<si; k++)
sub_prob.y[k] = -1;
for(; k<ei; k++)
sub_prob.y[k] = +1;
for(; k<sub_prob.l; k++)
sub_prob.y[k] = -1;
if(param->init_sol != NULL)
for(j=0;j<w_size;j++)
w[j] = param->init_sol[j*nr_class+i];
else
for(j=0;j<w_size;j++)
w[j] = 0;
train_one(&sub_prob, param, w, weighted_C[i], param->C);
for(int j=0;j<w_size;j++)
model_->w[j*nr_class+i] = w[j];
}
free(w);
free(sub_prob.y);
}
// info("sssssss%.6f\n",model_->w[1]);
free(x);
free(label);
free(start);
free(count);
free(perm);
free(sub_prob.x);
// free(sub_prob.y);
free(weighted_C);
}
// info("sssssss%.6f\n",model_->w[1]);
// info("b %.6f\n",model_->b[0]);
return model_;
}
void cross_validation(const problem *prob, const parameter *param, int nr_fold, double *target)
{
// printf("%g\n",param->C);
int i;
int *fold_start;
int l = prob->l;
int *perm = Malloc(int,l);
if (nr_fold > l)
{
nr_fold = l;
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
}
fold_start = Malloc(int,nr_fold+1);
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
struct problem subprob;
subprob.bias = prob->bias;
subprob.n = prob->n;
subprob.l = l-(end-begin);
subprob.x = Malloc(struct feature_node*,subprob.l);
subprob.y = Malloc(double,subprob.l);
k=0;
for(j=0;j<begin;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
struct model *submodel = train(&subprob,param);
for(j=begin;j<end;j++)
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
free_and_destroy_model(&submodel);
free(subprob.x);
free(subprob.y);
}
free(fold_start);
free(perm);
}
void find_parameter_C(const problem *prob, const parameter *param, int nr_fold, double start_C, double max_C, double *best_C,
double *best_acc_rate, double *best_mae_rate)
{
// variables for CV
int i;
int *fold_start;
int l = prob->l;
int *perm = Malloc(int, l);
double *target = Malloc(double, prob->l);
struct problem *subprob = Malloc(problem,nr_fold);
// variables for warm start
double ratio = 2;
double **prev_w = Malloc(double*, nr_fold);
for(i = 0; i < nr_fold; i++)
prev_w[i] = NULL;
int num_unchanged_w = 0;
struct parameter param1 = *param;
void (*default_print_string) (const char *) = liblinear_print_string;
if (nr_fold > l)
{
nr_fold = l;
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
}
fold_start = Malloc(int,nr_fold+1);
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
subprob[i].bias = prob->bias;
subprob[i].n = prob->n;
subprob[i].l = l-(end-begin);
subprob[i].x = Malloc(struct feature_node*,subprob[i].l);
subprob[i].y = Malloc(double,subprob[i].l);
k=0;
for(j=0;j<begin;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
}
*best_acc_rate = 0;
*best_mae_rate = INF;
if(start_C <= 0)
start_C = calc_start_C(prob,param);
param1.C = start_C;
while(param1.C <= max_C)
{
//Output disabled for running CV at a particular C
set_print_string_function(&print_null);
if(param->solver_type == L2R_NPSVOR)
{
param1.C1 = param1.C;
param1.C2 = param1.C;
}
for(i=0; i<nr_fold; i++)
{
int j;
int begin = fold_start[i];
int end = fold_start[i+1];
param1.init_sol = prev_w[i];
struct model *submodel = train(&subprob[i],¶m1);
int total_w_size;
if((submodel->nr_class == 2 && submodel->param.solver_type != L2R_NPSVOR)||submodel->param.solver_type == L2R_SVOR||check_regression_model(submodel))
total_w_size = subprob[i].n;
else if(submodel->param.solver_type == L2R_SVMOP)
total_w_size = subprob[i].n * (submodel->nr_class-1);
else
total_w_size = subprob[i].n * submodel->nr_class;
if(prev_w[i] == NULL)
{
prev_w[i] = Malloc(double, total_w_size);
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
else if(num_unchanged_w >= 0)
{
double norm_w_diff = 0;
for(j=0; j<total_w_size; j++)
{
norm_w_diff += (submodel->w[j] - prev_w[i][j])*(submodel->w[j] - prev_w[i][j]);
prev_w[i][j] = submodel->w[j];
}
norm_w_diff = sqrt(norm_w_diff);
if(norm_w_diff > 1e-15)
num_unchanged_w = -1;
}
else
{
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
for(j=begin; j<end; j++)
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
free_and_destroy_model(&submodel);
}
set_print_string_function(default_print_string);
int total_correct = 0;
double total_abserror=0;
for(i=0; i<prob->l; i++)
{if(target[i] == prob->y[i])
++total_correct;
total_abserror += fabs(target[i] - prob->y[i]);
}
double current_mae_rate = (double)total_abserror/prob->l;
double current_acc_rate = (double)total_correct/prob->l;
if(current_mae_rate < *best_mae_rate)
{
*best_C = param1.C;
*best_mae_rate = current_mae_rate;
*best_acc_rate = current_acc_rate;
}
info("log2c=%7.2f\tacc_rate=%.6f\tmae_rate=%.6f\n",log(param1.C)/log(2.0),current_acc_rate,current_mae_rate);
num_unchanged_w++;
if(num_unchanged_w == 3)
break;
param1.C = param1.C*ratio;
}
if(param1.C > max_C && max_C > start_C)
info("warning: maximum C reached.\n");
free(fold_start);
free(perm);
free(target);
for(i=0; i<nr_fold; i++)
{
free(subprob[i].x);
free(subprob[i].y);
free(prev_w[i]);
}
free(prev_w);
free(subprob);
}
void find_parameter_npsvor(const problem *prob, const parameter *param, int nr_fold,
double start_C, double max_C, double *best_C1, double *best_C2, double *best_acc_rate, double *best_mae_rate)
{
// variables for CV
int i;
int *fold_start;
int l = prob->l;
int *perm = Malloc(int, l);
double *target = Malloc(double, prob->l);
struct problem *subprob = Malloc(problem,nr_fold);
// variables for warm start
double ratio = 2;
double **prev_w = Malloc(double*, nr_fold);
for(i = 0; i < nr_fold; i++)
prev_w[i] = NULL;
int num_unchanged_w = 0;
struct parameter param1 = *param;
void (*default_print_string) (const char *) = liblinear_print_string;
if (nr_fold > l)
{
nr_fold = l;
fprintf(stderr,"WARNING: # folds > # data. Will use # folds = # data instead (i.e., leave-one-out cross validation)\n");
}
fold_start = Malloc(int,nr_fold+1);
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
subprob[i].bias = prob->bias;
subprob[i].n = prob->n;
subprob[i].l = l-(end-begin);
subprob[i].x = Malloc(struct feature_node*,subprob[i].l);
subprob[i].y = Malloc(double,subprob[i].l);
k=0;
for(j=0;j<begin;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob[i].x[k] = prob->x[perm[j]];
subprob[i].y[k] = prob->y[perm[j]];
++k;
}
}
*best_acc_rate = 0;
*best_mae_rate = 0;
if(start_C <= 0)
start_C = calc_start_C(prob,param);
param1.C1 = start_C;
while(param1.C1 <= max_C)
{
param1.C2 = start_C;
while(param1.C2 <= max_C)
{
//Output disabled for running CV at a particular C
set_print_string_function(&print_null);
for(i=0; i<nr_fold; i++)
{
int j;
int begin = fold_start[i];
int end = fold_start[i+1];
param1.init_sol = prev_w[i];
struct model *submodel = train(&subprob[i],¶m1);
int total_w_size;
if(submodel->nr_class == 2)
total_w_size = subprob[i].n;
else
total_w_size = subprob[i].n * submodel->nr_class;
if(prev_w[i] == NULL)
{
prev_w[i] = Malloc(double, total_w_size);
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
else if(num_unchanged_w >= 0)
{
double norm_w_diff = 0;
for(j=0; j<total_w_size; j++)
{
norm_w_diff += (submodel->w[j] - prev_w[i][j])*(submodel->w[j] - prev_w[i][j]);
prev_w[i][j] = submodel->w[j];
}
norm_w_diff = sqrt(norm_w_diff);
if(norm_w_diff > 1e-15)
num_unchanged_w = -1;
}
else
{
for(j=0; j<total_w_size; j++)
prev_w[i][j] = submodel->w[j];
}
for(j=begin; j<end; j++)
target[perm[j]] = predict(submodel,prob->x[perm[j]]);
free_and_destroy_model(&submodel);
}
set_print_string_function(default_print_string);
int total_correct = 0;
double total_abserror=0;
for(i=0; i<prob->l; i++)
{if(target[i] == prob->y[i])
++total_correct;
total_abserror += fabs(target[i] - prob->y[i]);
}
double current_mae_rate = (double)total_abserror/prob->l;
double current_acc_rate = (double)total_correct/prob->l;
if(current_mae_rate > *best_mae_rate)
{
*best_C1 = param1.C1;
*best_C2 = param1.C2;
*best_mae_rate = current_mae_rate;
*best_acc_rate = current_acc_rate;
}
info("log2c1=%7.2f log2c2=%7.2f\tacc_rate=%g\tmae_rate=%g\n",log(param1.C1)/log(2.0),
log(param1.C2)/log(2.0),current_acc_rate,current_mae_rate);
num_unchanged_w++;
if(num_unchanged_w == 3)
break;
param1.C2 = param1.C2*ratio;
}
param1.C1 = param1.C1*ratio;
}
if((param1.C1 > max_C||param1.C2 > max_C) && max_C > start_C)
info("warning: maximum C reached.\n");
free(fold_start);
free(perm);
free(target);
for(i=0; i<nr_fold; i++)
{
free(subprob[i].x);
free(subprob[i].y);
free(prev_w[i]);
}
free(prev_w);
free(subprob);
}
double predict_values(const struct model *model_, const struct feature_node *x, double *dec_values)
{
int idx;
int n;
if(model_->bias>=0)
n=model_->nr_feature+1;
else
n=model_->nr_feature;
double *w=model_->w;
int nr_class=model_->nr_class;
int i;
int nr_w;
if((nr_class==2 && model_->param.solver_type != MCSVM_CS &&
model_->param.solver_type != L2R_NPSVOR)||model_->param.solver_type == L2R_SVOR||check_regression_model(model_))
nr_w = 1;
else if(model_->param.solver_type == L2R_SVMOP)
nr_w = nr_class-1;
else
nr_w = nr_class;
const feature_node *lx=x;
for(i=0;i<nr_w;i++)
dec_values[i] = 0;
for(; (idx=lx->index)!=-1; lx++)
{
// the dimension of testing data may exceed that of training
if(idx<=n)
for(i=0;i<nr_w;i++)
dec_values[i] += w[(idx-1)*nr_w+i]*lx->value;
}
if(check_regression_model(model_))
for(i=0;i<nr_w;i++) dec_values[i] = (dec_values[i]+0.5)*(nr_class-1)+1;
if(nr_class==2 && model_->param.solver_type!= L2R_SVOR && model_->param.solver_type != L2R_NPSVOR
&& model_->param.solver_type != L2R_SVMOP)
{
if(check_regression_model(model_))
return (fabs(dec_values[0]-model_->label[0])<fabs(dec_values[0]-model_->label[1]))?model_->label[0]:model_->label[1];
else
return (dec_values[0]>0)?model_->label[0]:model_->label[1];
}
else if (model_->param.solver_type == L2R_SVOR)// My modification begin
{
int count = 1;
for(int j=0;j<nr_class-1;j++)
{
if (dec_values[0] + model_->b[j]>0)
count = count +1;
}
return model_->label[count-1];
} // My modification end
else if (model_->param.solver_type == L2R_NPSVOR && model_->param.npsvor!=4)
{
//******************************************predict method 1
// int dec_min_idx = 0;
// for(i=1;i<nr_class;i++)
// {
// if(fabs(dec_values[i]) < fabs(dec_values[dec_min_idx]))
// dec_min_idx = i;
// }
// return model_->label[dec_min_idx];
//******************************************predict method 2
int count = 1;
for(int j=0;j<nr_class-1;j++)
{
// if (dec_values[j+1]+dec_values[j]>0)
// {count += 1;}
if (dec_values[j+1]+dec_values[j]>0)
count += 1;
}
return model_->label[count-1];
// int count = 1;
// for(int j=0;j<nr_class-1;j++)
// {
// // if (dec_values[j+1]+dec_values[j]>0)
// // {count += 1;}
// if (dec_values[j+1]+dec_values[j]>0)
// count = max(count,j+2);
// }
// return model_->label[count-1];
//******************************************predict method 3
// double *dec = Malloc(double, nr_class*(nr_class+1)/2);
// int *vote = Malloc(int,nr_class);
// for(i=0;i<nr_class;i++)
// vote[i] = 0;
// int p=0;
// for(i=0;i<nr_class;i++)
// for(int j=i+1;j<nr_class;j++)
// {
// dec[p] = dec_values[j] + dec_values[i];
// if(dec[p] > 0)
// ++vote[j];
// else
// ++vote[i];
// p++;
// }
// int vote_max_idx = 0;
// for(i=1;i<nr_class;i++)
// if(vote[i] > vote[vote_max_idx])
// vote_max_idx = i;
// free(vote);
// return model_->label[vote_max_idx];
}
else if(check_regression_model(model_))
{
int dec_min_idx = 0;
for(i=1;i<nr_class;i++)
{
if(fabs(dec_values[0]-model_->label[i]) < fabs(dec_values[0]-model_->label[dec_min_idx]))
dec_min_idx = i;
}
return model_->label[dec_min_idx];
}
else if (model_->param.solver_type == L2R_SVMOP || (model_->param.solver_type == L2R_NPSVOR && model_->param.npsvor==4))
{
// int dec_max_idx = 0;
// double *prob_estimates = Malloc(double, model_->nr_class);
// for(i=0;i<nr_class-1;i++)
// dec_values[i]=1/(1+exp(-dec_values[i]));
// // double sum=0;
// // for(i=0; i<nr_class-1; i++)
// // sum+=dec_values[i];
// // for(i=0; i<nr_class-1; i++)
// // dec_values[i]=dec_values[i]/sum;
// for(i=0;i<nr_class;i++)
// {
// if(i==0)
// prob_estimates[i] = 1-dec_values[0];
// else if(i==nr_class-1)
// prob_estimates[i] = dec_values[nr_class-1];
// else
// prob_estimates[i] = dec_values[i-1]-dec_values[i];
// }
// // for(i=0;i<nr_class-1;i++)
// // {info("%.3f ",dec_values[i]);}
// for(i=1;i<nr_class;i++)
// {
// if(prob_estimates[i] > prob_estimates[dec_max_idx])
// dec_max_idx = i;
// }
// return model_->label[dec_max_idx];
//******************************************predict method 3
// int dec_max_idx = 0;
// for(i=0;i<nr_w;i++)
// dec_values[i]=1/(1+exp(-dec_values[i]));
// double *prob_estimates = Malloc(double, model_->nr_class);
// if(nr_class==2) // for binary classification
// {
// prob_estimates[0]=1.- dec_values[0];
// prob_estimates[1] = dec_values[0];
// }
// else
// {
// double sum=0;
// for(i=0; i<nr_w; i++)
// sum += dec_values[i];
// for(i=0; i<nr_w; i++)
// dec_values[i]=dec_values[i]/sum;
// // info("%.3f ", dec_values[0]);
// for(i=0;i<nr_class;i++)
// {
// if(i==0)
// prob_estimates[i] = 1-dec_values[0];
// else if(i==nr_class-1)
// prob_estimates[i] = dec_values[nr_w-1];
// else
// prob_estimates[i] = dec_values[i-1] - dec_values[i];
// }
// }
// // for(i=0;i<nr_class;i++)
// // {info("%.3f ", prob_estimates[i]);}
// for(i=1;i<nr_class;i++)
// {
// if(prob_estimates[i] > prob_estimates[dec_max_idx])
// dec_max_idx = i;
// }
// return model_->label[dec_max_idx];
//******************************************predict method 3
int count = 1;
for(int j=0;j<nr_class-1;j++)
{
if (dec_values[j]>0)
count += 1;
}
return model_->label[count-1];
}
else
{
int dec_max_idx = 0;
for(i=1;i<nr_class;i++)
{
if(dec_values[i] > dec_values[dec_max_idx])
dec_max_idx = i;
}
return model_->label[dec_max_idx];
}
}
double predict(const model *model_, const feature_node *x)
{
double *dec_values = Malloc(double, model_->nr_class);
double label=predict_values(model_, x, dec_values);
free(dec_values);
return label;
}
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates)
{
if(check_probability_model(model_))
{
int i;
int nr_class=model_->nr_class;
int nr_w;
if(nr_class==2)
nr_w = 1;
else
nr_w = nr_class;
double label=predict_values(model_, x, prob_estimates);
for(i=0;i<nr_w;i++)
prob_estimates[i]=1/(1+exp(-prob_estimates[i]));
if(nr_class==2) // for binary classification
prob_estimates[1]=1.-prob_estimates[0];
else
{
double sum=0;
for(i=0; i<nr_class; i++)
sum+=prob_estimates[i];
for(i=0; i<nr_class; i++)
prob_estimates[i]=prob_estimates[i]/sum;
}
return label;
}
else
return 0;
}
static const char *solver_type_table[]=
{
"L2R_LR", "L2R_L2LOSS_SVC_DUAL", "L2R_L2LOSS_SVC", "L2R_L1LOSS_SVC_DUAL", "MCSVM_CS",
"L1R_L2LOSS_SVC", "L1R_LR", "L2R_LR_DUAL",
"L2R_SVOR", "L2R_NPSVOR", "L2R_SVMOP",//My modification
"L2R_L2LOSS_SVR", "L2R_L2LOSS_SVR_DUAL", "L2R_L1LOSS_SVR_DUAL", NULL
};
int save_model(const char *model_file_name, const struct model *model_)
{
int i;
int nr_feature=model_->nr_feature;
int n;
const parameter& param = model_->param;
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
int w_size = n;
FILE *fp = fopen(model_file_name,"w");
if(fp==NULL) return -1;
char *old_locale = setlocale(LC_ALL, NULL);
if (old_locale)
{
old_locale = strdup(old_locale);
}
setlocale(LC_ALL, "C");
int nr_w;
if((model_->nr_class==2 && model_->param.solver_type != MCSVM_CS)
||model_->param.solver_type ==L2R_SVOR||check_regression_model(model_))
nr_w=1;
else if(model_->param.solver_type ==L2R_SVMOP)
nr_w = model_->nr_class -1;
else
nr_w=model_->nr_class;
fprintf(fp, "solver_type %s\n", solver_type_table[param.solver_type]);
fprintf(fp, "nr_class %d\n", model_->nr_class);
if(model_->label)
{
fprintf(fp, "label");
for(i=0; i<model_->nr_class; i++)
fprintf(fp, " %d", model_->label[i]);
fprintf(fp, "\n");
}
fprintf(fp, "nr_feature %d\n", nr_feature);
fprintf(fp, "bias %.16g\n", model_->bias);
fprintf(fp, "w\n");
for(i=0; i<w_size; i++)
{
int j;
for(j=0; j<nr_w; j++)
fprintf(fp, "%.16g ", model_->w[i*nr_w+j]);
fprintf(fp, "\n");
}
if(model_->param.solver_type==L2R_SVOR)
{
fprintf(fp, "b\n");
for(i=0; i<model_->nr_class-1; i++)
{
fprintf(fp, "%.16g ", model_->b[i]);
fprintf(fp, "\n");
}
}
setlocale(LC_ALL, old_locale);
free(old_locale);
if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
else return 0;
}
//
// FSCANF helps to handle fscanf failures.
// Its do-while block avoids the ambiguity when
// if (...)
// FSCANF();
// is used
//
#define FSCANF(_stream, _format, _var)do{ if (fscanf(_stream, _format, _var) != 1) { fprintf(stderr, "ERROR: fscanf failed to read the model\n"); EXIT_LOAD_MODEL() }}while(0)
// EXIT_LOAD_MODEL should NOT end with a semicolon.
#define EXIT_LOAD_MODEL(){ setlocale(LC_ALL, old_locale); free(model_->label); free(model_); free(old_locale); return NULL;}
struct model *load_model(const char *model_file_name)
{
FILE *fp = fopen(model_file_name,"r");
if(fp==NULL) return NULL;
int i;
int nr_feature;
int n;
int nr_class;
double bias;
model *model_ = Malloc(model,1);
parameter& param = model_->param;
model_->label = NULL;
char *old_locale = setlocale(LC_ALL, NULL);
if (old_locale)
{
old_locale = strdup(old_locale);
}
setlocale(LC_ALL, "C");
char cmd[81];
while(1)
{
FSCANF(fp,"%80s",cmd);
if(strcmp(cmd,"solver_type")==0)
{
FSCANF(fp,"%80s",cmd);
int i;
for(i=0;solver_type_table[i];i++)
{
if(strcmp(solver_type_table[i],cmd)==0)
{
param.solver_type=i;
break;
}
}
if(solver_type_table[i] == NULL)
{
fprintf(stderr,"unknown solver type.\n");
EXIT_LOAD_MODEL()
}
}
else if(strcmp(cmd,"nr_class")==0)
{
FSCANF(fp,"%d",&nr_class);
model_->nr_class=nr_class;
}
else if(strcmp(cmd,"nr_feature")==0)
{
FSCANF(fp,"%d",&nr_feature);
model_->nr_feature=nr_feature;
}
else if(strcmp(cmd,"bias")==0)
{
FSCANF(fp,"%lf",&bias);
model_->bias=bias;
}
else if(strcmp(cmd,"w")==0)
{
break;
}
else if(strcmp(cmd,"label")==0)
{
int nr_class = model_->nr_class;
model_->label = Malloc(int,nr_class);
for(int i=0;i<nr_class;i++)
FSCANF(fp,"%d",&model_->label[i]);
}
else
{
fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
EXIT_LOAD_MODEL()
}
}
nr_feature=model_->nr_feature;
if(model_->bias>=0)
n=nr_feature+1;
else
n=nr_feature;
int w_size = n;
int nr_w;
// if(nr_class==2 && param.solver_type != MCSVM_CS)
if((nr_class==2 && param.solver_type != MCSVM_CS)||param.solver_type ==L2R_SVOR||check_regression_model(model_))
nr_w = 1;
else if(param.solver_type ==L2R_SVMOP)
nr_w = nr_class -1;
else
nr_w = nr_class;
model_->w=Malloc(double, w_size*nr_w);
for(i=0; i<w_size; i++)
{
int j;
for(j=0; j<nr_w; j++)
{
FSCANF(fp, "%lf ", &model_->w[i*nr_w+j]);
// info("%.3f ",model_->w[i*nr_w+j]);
}
if (fscanf(fp, "\n") !=0)
{
fprintf(stderr, "ERROR: fscanf failed to read the model\n");
EXIT_LOAD_MODEL()
}
}
if(param.solver_type == L2R_SVOR)
{ FSCANF(fp,"%80s",cmd);
if(strcmp(cmd,"b")==0)
{
model_->b=Malloc(double, nr_class-1);
for(i=0; i<nr_class-1; i++)
{
FSCANF(fp, "%lf ", &model_->b[i]);
// info("%f\n",model_->b[i]);
}
}
}
setlocale(LC_ALL, old_locale);
free(old_locale);
if (ferror(fp) != 0 || fclose(fp) != 0) return NULL;
// info("%f\n",model_->b[0]);
return model_;
}
int get_nr_feature(const model *model_)
{
return model_->nr_feature;
}
int get_nr_class(const model *model_)
{
return model_->nr_class;
}
void get_labels(const model *model_, int* label)
{
if (model_->label != NULL)
for(int i=0;i<model_->nr_class;i++)
label[i] = model_->label[i];
}
// use inline here for better performance (around 20% faster than the non-inline one)
static inline double get_w_value(const struct model *model_, int idx, int label_idx)
{
int nr_class = model_->nr_class;
int solver_type = model_->param.solver_type;
const double *w = model_->w;
if(idx < 0 || idx > model_->nr_feature)
return 0;
if(check_regression_model(model_))
return w[idx];
else
{
if(label_idx < 0 || label_idx >= nr_class)
return 0;
if((nr_class==2 && solver_type != MCSVM_CS && solver_type != L2R_NPSVOR)||solver_type ==L2R_SVOR) //add
// if(nr_class == 2 && solver_type != MCSVM_CS)
{
if(label_idx == 0)
return w[idx];
else
return -w[idx];
}
else if(solver_type == L2R_SVMOP)
return w[idx*(nr_class-1)+label_idx];
else
return w[idx*nr_class+label_idx];
}
}
// feat_idx: starting from 1 to nr_feature
// label_idx: starting from 0 to nr_class-1 for classification models;
// for regression models, label_idx is ignored.
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx)
{
if(feat_idx > model_->nr_feature)
return 0;
return get_w_value(model_, feat_idx-1, label_idx);
}
double get_decfun_bias(const struct model *model_, int label_idx)
{
int bias_idx = model_->nr_feature;
double bias = model_->bias;
if(bias <= 0)
return 0;
else
return bias*get_w_value(model_, bias_idx, label_idx);
}
void free_model_content(struct model *model_ptr)
{
if(model_ptr->w != NULL)
free(model_ptr->w);
if(model_ptr->label != NULL)
free(model_ptr->label);
}
void free_and_destroy_model(struct model **model_ptr_ptr)
{
struct model *model_ptr = *model_ptr_ptr;
if(model_ptr != NULL)
{
free_model_content(model_ptr);
free(model_ptr);
}
}
void destroy_param(parameter* param)
{
if(param->weight_label != NULL)
free(param->weight_label);
if(param->weight != NULL)
free(param->weight);
if(param->init_sol != NULL)
free(param->init_sol);
}
const char *check_parameter(const problem *prob, const parameter *param)
{
if(param->eps <= 0)
return "eps <= 0";
if(param->C <= 0)
return "C <= 0";
if(param->p < 0)
return "p < 0";
if(param->solver_type != L2R_LR
&& param->solver_type != L2R_L2LOSS_SVC_DUAL
&& param->solver_type != L2R_L2LOSS_SVC
&& param->solver_type != L2R_L1LOSS_SVC_DUAL
&& param->solver_type != MCSVM_CS
&& param->solver_type != L1R_L2LOSS_SVC
&& param->solver_type != L1R_LR
&& param->solver_type != L2R_LR_DUAL
&& param->solver_type != L2R_SVOR//my modification
&& param->solver_type != L2R_NPSVOR
&& param->solver_type != L2R_SVMOP
&& param->solver_type != L2R_L2LOSS_SVR
&& param->solver_type != L2R_L2LOSS_SVR_DUAL
&& param->solver_type != L2R_L1LOSS_SVR_DUAL)
{return "unknown solver type";}
if(param->init_sol != NULL
&& param->solver_type != L2R_LR && param->solver_type != L2R_L2LOSS_SVC)
return "Initial-solution specification supported only for solver L2R_LR and L2R_L2LOSS_SVC";
return NULL;
}
int check_probability_model(const struct model *model_)
{
return (model_->param.solver_type==L2R_LR ||
model_->param.solver_type==L2R_LR_DUAL ||
model_->param.solver_type==L1R_LR);
}
int check_regression_model(const struct model *model_)
{
return (model_->param.solver_type==L2R_L2LOSS_SVR ||
model_->param.solver_type==L2R_L1LOSS_SVR_DUAL ||
model_->param.solver_type==L2R_L2LOSS_SVR_DUAL);
}
void set_print_string_function(void (*print_func)(const char*))
{
if (print_func == NULL)
liblinear_print_string = &print_string_stdout;
else
liblinear_print_string = print_func;
}
linear.h
#ifndef _LIBLINEAR_H
#define _LIBLINEAR_H
#ifdef __cplusplus
extern "C" {
#endif
struct feature_node
{
int index;
double value;
};
struct problem
{
int l, n;
double *y;
struct feature_node **x;
double bias; /* < 0 if no bias term */
};
enum { L2R_LR, L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC,
L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, L1R_LR, L2R_LR_DUAL,
L2R_SVOR,L2R_NPSVOR,L2R_SVMOP,//my modification
L2R_L2LOSS_SVR = 11, L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL }; /* solver_type */
struct parameter
{
int solver_type;
/* these are for training only */
double eps; /* stopping criteria */
double C;
int nr_weight;
int *weight_label;
double* weight;
double p;
double *init_sol;
/*
* -------------------my modification---------------------------
*/
double rho;
double wl; //power for cost
double svor;
double C1;
double C2;
double npsvor;
double g;
/*
* -------------------my modification---------------------------
*/
};
struct model
{
struct parameter param;
int nr_class; /* number of classes */
int nr_feature;
double *w;
int *label; /* label of each class */
double bias;
double *b; /*My modification*************/
};
struct model* train(const struct problem *prob, const struct parameter *param);
void cross_validation(const struct problem *prob, const struct parameter *param, int nr_fold, double *target);
void find_parameter_C(const struct problem *prob, const struct parameter *param, int nr_fold, double start_C, double max_C, double *best_C, double *best_acc_rate, double *best_mae_rate);
void find_parameter_npsvor(const struct problem *prob, const struct parameter *param, int nr_fold, double start_C, double max_C, double *best_C1, double *best_C2, double *best_acc_rate, double *best_mae_rate);
double predict_values(const struct model *model_, const struct feature_node *x, double* dec_values);
double predict(const struct model *model_, const struct feature_node *x);
double predict_probability(const struct model *model_, const struct feature_node *x, double* prob_estimates);
int save_model(const char *model_file_name, const struct model *model_);
struct model *load_model(const char *model_file_name);
int get_nr_feature(const struct model *model_);
int get_nr_class(const struct model *model_);
void get_labels(const struct model *model_, int* label);
double get_decfun_coef(const struct model *model_, int feat_idx, int label_idx);
double get_decfun_bias(const struct model *model_, int label_idx);
void free_model_content(struct model *model_ptr);
void free_and_destroy_model(struct model **model_ptr_ptr);
void destroy_param(struct parameter *param);
const char *check_parameter(const struct problem *prob, const struct parameter *param);
int check_probability_model(const struct model *model);
int check_regression_model(const struct model *model);
void set_print_string_function(void (*print_func) (const char*));
#ifdef __cplusplus
}
#endif
#endif /* _LIBLINEAR_H */
原文:http://www.cnblogs.com/huadongw/p/5860849.html