题意:
n个点m条边,问m条边构成的是否为欧拉路。
是的话输出路径上所有点的异或和,每个点经过几次异或几次。
思路:
先用并查集判断是否连通,然后如果是欧拉路的话有两种情况
如果奇数度节点有2个,就枚举这两个点做起点,选大的
如果都为偶数度节点,就枚举n个起点,选大的
/* *********************************************** Author :devil ************************************************ */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <stack> #include <map> #include <string> #include <cmath> #include <stdlib.h> #define inf 0x3f3f3f3f #define LL long long #define rep(i,a,b) for(int i=a;i<=b;i++) #define dep(i,a,b) for(int i=a;i>=b;i--) #define ou(a) printf("%d\n",a) #define pb push_back #define mkp make_pair template<class T>inline void rd(T &x){char c=getchar();x=0;while(!isdigit(c))c=getchar();while(isdigit(c)){x=x*10+c-‘0‘;c=getchar();}} #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); using namespace std; const int mod=1e9+7; const int N=1e5+10; int cnt,a[N],deg[N]; int pre[N]; int fnd(int x) { int r=x; while(pre[r]!=r) r=pre[r]; int i=x,j; while(i!=r) { j=pre[i]; pre[i]=r; i=j; } return r; } void join(int x,int y) { x=fnd(x),y=fnd(y); if(x!=y) { pre[x]=y; cnt--; } } int main() { int t,n,m,x,y; rd(t); while(t--) { rd(n),rd(m); rep(i,1,n) rd(a[i]); memset(deg,0,sizeof(deg)); cnt=n; rep(i,1,n) pre[i]=i; while(m--) { rd(x),rd(y); join(x,y); deg[x]++; deg[y]++; } if(cnt>1) { printf("Impossible\n"); continue; } int con=0; rep(i,1,n) if(deg[i]%2) con++; if(con!=0&&con!=2) { printf("Impossible\n"); continue; } int ans=0; if(con) { rep(i,1,n) if(((deg[i]+1)/2)&1) ans^=a[i]; } else { int tmp=0; rep(i,1,n) if((deg[i]/2)&1) tmp^=a[i]; rep(i,1,n) ans=max(ans,tmp^a[i]); } printf("%d\n",ans); } return 0; }
HDU5883 The Best Path(并查集+欧拉路)
原文:http://www.cnblogs.com/d-e-v-i-l/p/5890721.html