轨道力学中二体问题下求解兰伯特方程需要解决一个迭代问题。
这是一个老外写的,有很多注释,相信大家应该能看懂,经实际检测,切实可用
function [v1,v2]=solve_lambert(r1,r2,t,GM,lw,N,branch) %This routine implements a new algorithm that solves Lambert‘s problem. The %algorithm has two major characteristics that makes it favorable to other %existing ones. % % 1) It describes the generic orbit solution of the boundary condition % problem through the variable X=log(1+cos(alpha/2)). By doing so the % graphs of the time of flight become defined in the entire real axis and % resembles a straight line. Convergence is granted within few iterations % for all the possible geometries (except, of course, when the transfer % angle is zero). When multiple revolutions are considered the variable is % X=tan(cos(alpha/2)*pi/2). % % 2) Once the orbit has been determined in the plane, this routine % evaluates the velocity vectors at the two points in a way that is not % singular for the transfer angle approaching to pi (Lagrange coefficient % based methods are numerically not well suited for this purpose). % % As a result Lambert‘s problem is solved (with multiple revolutions % being accounted for) with the same computational effort for all % possible geometries. The case of near 180 transfers is also solved % efficiently. % % We note here that even when the transfer angle is exactly equal to pi % the algorithm does solve the problem in the plane (it finds X), but it % is not able to evaluate the plane in which the orbit lies. A solution % to this would be to provide the direction of the plane containing the % transfer orbit from outside. This has not been implemented in this % routine since such a direction would depend on which application the % transfer is going to be used in. % %Usage: [v1,v2,a,p,theta,iter]=solve_lambert(r1,r2,t,GM,lw,N,branch) % %Inputs: % r1=Position vector at departure (column,km) % r2=Position vector at arrival (column, same units as r1,km) % t=Transfer time (scalar,s) % GM=gravitational parameter (scalar, units have to be % consistent with r1,t units,km^3/s^2) % lw=1 if long way is chosen % branch=1 if the left branch is selected in a problem where N % is not 0 (multirevolution) % 注:天体运行是右分支.所以branch一般选择0 % N=number of revolutions % % 说明:当N~=0时,旋转方向不光用lw来控制还要先用branch来控制. %Outputs: % v1=Velocity at departure (consistent units)(km/s) % v2=Velocity at arrival (km/s) % iter=number of iteration made by the newton solver (usually 6) % % 当需要时可以加上. %补充说明: % [v1,v2,a,p,theta,iter]=lambertI(r1,r2,t,GM,lw,N,branch); %branch=1;%here 1 is represent left %Preliminary control on the function call if t<=0 disp(‘Negative time as input‘); v1=NaN; v2=NaN; return end tol=1e-11; %Increasing the tolerance does not bring any advantage as the %precision is usually greater anyway (due to the rectification of the tof %graph) except near particular cases such as parabolas in which cases a %lower precision allow for usual convergence. %Non dimensional units R=sqrt(r1‘*r1); V=sqrt(GM/R); T=R/V; %working with non-dimensional radii and time-of-flight r1=r1/R; r2=r2/R; t=t/T; %Evaluation of the relevant geometry parameters in non dimensional units r2mod=sqrt(r2‘*r2); theta=real(acos((r1‘*r2)/r2mod)); %the real command is useful when theta is very %close to pi and the acos function could return complex numbers %计算夹角,并确定是大弧还是小弧. if lw theta=2*pi-theta; end c=sqrt(1+r2mod^2-2*r2mod*cos(theta)); %non dimensional chord s=(1+r2mod+c)/2; %non dimensional semi-perimeter am=s/2; %minimum energy ellipse semi major axis lambda=sqrt(r2mod)*cos(theta/2)/s; %lambda parameter defined in BATTIN‘s book %We start finding the log(x+1) value of the solution conic: %%NO MULTI REV --> (1 SOL) if N==0 inn1=-.5233; %first guess point inn2=.5233; %second guess point x1=log(1+inn1); x2=log(1+inn2); y1=log(x2tof(inn1,s,c,lw,N))-log(t); y2=log(x2tof(inn2,s,c,lw,N))-log(t); %Newton iterations err=1; i=0; while (err>tol) && (y1~=y2) i=i+1; xnew=(x1*y2-y1*x2)/(y2-y1); ynew=log(x2tof(exp(xnew)-1,s,c,lw,N))-log(t); x1=x2; y1=y2; x2=xnew; y2=ynew; err=abs(x1-xnew); end x=exp(xnew)-1; %%MULTI REV --> (2 SOL) SEPARATING RIGHT AND LEFT BRANCH else if branch==1 inn1=-.5234; inn2=-.2234; else inn1=0.2; inn2=.5234; end x1=tan(inn1*pi/2); x2=tan(inn2*pi/2); y1=x2tof(inn1,s,c,lw,N)-t; y2=x2tof(inn2,s,c,lw,N)-t; err=1; i=0; %Newton Iteration while ((err>tol) && (i<90) && (y1~=y2)) i=i+1; xnew=(x1*y2-y1*x2)/(y2-y1); ynew=x2tof(atan(xnew)*2/pi,s,c,lw,N)-t; x1=x2; y1=y2; x2=xnew; y2=ynew; err=abs(x1-xnew); end x=atan(xnew)*2/pi; end %The solution has been evaluated in terms of log(x+1) or tan(x*pi/2), we %now need the conic. As for transfer angles near to pi the lagrange %coefficient technique goes singular (dg approaches a zero/zero that is %numerically bad) we here use a different technique for those cases. When %the transfer angle is exactly equal to pi, then the ih unit vector is not %determined. The remaining equations, though, are still valid. a=am/(1-x^2); %solution semimajor axis %calcolo psi if x<1 %ellisse beta=2*asin(sqrt((s-c)/2/a)); if lw beta=-beta; end alfa=2*acos(x); psi=(alfa-beta)/2; eta2=2*a*sin(psi)^2/s; eta=sqrt(eta2); else %iperbole beta=2*asinh(sqrt((c-s)/2/a)); if lw beta=-beta; end alfa=2*acosh(x); psi=(alfa-beta)/2; eta2=-2*a*sinh(psi)^2/s; eta=sqrt(eta2); end p=r2mod/am/eta2*sin(theta/2)^2; %parameter of the solution sigma1=1/eta/sqrt(am)*(2*lambda*am-(lambda+x*eta)); ih=cross(r1,r2)/norm(cross(r1,r2)); if lw ih=-ih; end vr1 = sigma1; vt1 = sqrt(p); v1 = vr1 * r1 + vt1 * cross(ih,r1); vt2=vt1/r2mod; vr2=-vr1+(vt1-vt2)/tan(theta/2); v2=vr2*r2/r2mod+vt2*cross(ih,r2/r2mod); v1=v1*V; v2=v2*V; if err>tol v1=[100 100 100]‘; v2=[100 100 100]‘; end function t=x2tof(x,s,c,lw,N) %Subfunction that evaluates the time of flight as a function of x am=s/2; a=am/(1-x^2); if x<1 %ELLISSE beta=2*asin(sqrt((s-c)/2/a)); if lw beta=-beta; end alfa=2*acos(x); else %IPERBOLE alfa=2*acosh(x); beta=2*asinh(sqrt((s-c)/(-2*a))); if lw beta=-beta; end end t=tofabn(a,alfa,beta,N); function t=tofabn(sigma,alfa,beta,N) %subfunction that evaluates the time of flight via Lagrange expression if sigma>0 t=sigma*sqrt(sigma)*((alfa-sin(alfa))-(beta-sin(beta))+N*2*pi); else t=-sigma*sqrt(-sigma)*((sinh(alfa)-alfa)-(sinh(beta)-beta)); end
求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Matlab程序,布布扣,bubuko.com
求解轨道力学二体意义下的Lambert方程(兰伯特方程)的Matlab程序
原文:http://www.cnblogs.com/scicalweb/p/3725334.html