以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念。由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍。本文将从Java的角度看问题,包含下面的这些概念:
1. 字符串
2. 链表
3. 树
4. 图
5. 排序
6. 递归 vs. 迭代
7. 动态规划
8. 位操作
9. 概率问题
10. 排列组合
如果IDE没有代码自动补全功能,所以你应该记住下面的这些方法。
toCharArray() // 获得字符串对应的char数组 Arrays.sort() // 数组排序 Arrays.toString(char[] a) // 数组转成字符串 charAt(int x) // 获得某个索引处的字符 length() // 字符串长度 length // 数组大小
在Java中,链表的实现非常简单,每个节点Node都有一个值val和指向下个节点的链接next。
class Node { int val; Node next; Node(int x) { val = x; next = null; } }
链表两个著名的应用是栈Stack和队列Queue。
栈:
class Stack{ Node top; public Node peek(){ if(top != null){ return top; } return null; } public Node pop(){ if(top == null){ return null; }else{ Node temp = new Node(top.val); top = top.next; return temp; } } public void push(Node n){ if(n != null){ n.next = top; top = n; } } }
队列:
class Queue{ Node first, last; public void enqueue(Node n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } } public Node dequeue(){ if(first == null){ return null; }else{ Node temp = new Node(first.val); first = first.next; return temp; } } }
这里的树通常是指二叉树,每个节点都包含一个左孩子节点和右孩子节点,像下面这样:
class TreeNode{ int value; TreeNode left; TreeNode right; }
下面是与树相关的一些概念:
译者注:完美二叉树也隐约称为完全二叉树。完美二叉树的一个例子是一个人在给定深度的祖先图,因为每个人都一定有两个生父母。完全二叉树可以看成是可以有若干额外向左靠的叶子节点的完美二叉树。疑问:完美二叉树和满二叉树的区别?(参考:http://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html)
图相关的问题主要集中在深度优先搜索(depth first search)和广度优先搜索(breath first search)。
下面是一个简单的图广度优先搜索的实现。看更多资料请看
1) 定义GraphNode
class GraphNode{ int val; GraphNode next; GraphNode[] neighbors; boolean visited; GraphNode(int x) { val = x; } GraphNode(int x, GraphNode[] n){ val = x; neighbors = n; } public String toString(){ return "value: "+ this.val; } }
2) 定义一个队列Queue
class Queue{ GraphNode first, last; public void enqueue(GraphNode n){ if(first == null){ first = n; last = first; }else{ last.next = n; last = n; } } public GraphNode dequeue(){ if(first == null){ return null; }else{ GraphNode temp = new GraphNode(first.val, first.neighbors); first = first.next; return temp; } } }
3) 用队列Queue实现广度优先搜索
public class GraphTest { public static void main(String[] args) { GraphNode n1 = new GraphNode(1); GraphNode n2 = new GraphNode(2); GraphNode n3 = new GraphNode(3); GraphNode n4 = new GraphNode(4); GraphNode n5 = new GraphNode(5); n1.neighbors = new GraphNode[]{n2,n3,n5}; n2.neighbors = new GraphNode[]{n1,n4}; n3.neighbors = new GraphNode[]{n1,n4,n5}; n4.neighbors = new GraphNode[]{n2,n3,n5}; n5.neighbors = new GraphNode[]{n1,n3,n4}; breathFirstSearch(n1, 5); } public static void breathFirstSearch(GraphNode root, int x){ if(root.val == x) System.out.println("find in root"); Queue queue = new Queue(); root.visited = true; queue.enqueue(root); while(queue.first != null){ GraphNode c = (GraphNode) queue.dequeue(); for(GraphNode n: c.neighbors){ if(!n.visited){ System.out.print(n + " "); n.visited = true; if(n.val == x) System.out.println("Find "+n); queue.enqueue(n); } } } } }
value: 2 value: 3 value: 5 Find value: 5 value: 4
下面是不同排序算法的时间复杂度,你可以去wiki看一下这些算法的基本思想。
Algorithm | Average Time | Worst Time | Space |
冒泡排序 | n^2 | n^2 | 1 |
选择排序 | n^2 | n^2 | 1 |
Counting Sort | n+k | n+k | n+k |
Insertion sort | n^2 | n^2 | |
Quick sort | n log(n) | n^2 | |
Merge sort | n log(n) | n log(n) | depends |
另外,这里有一些实现/演示:: Counting sort、Mergesort、 Quicksort、 InsertionSort。
1. 快速排序
介绍:
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。
步骤:
排序效果:
介绍:
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用
步骤:
排序效果:
介绍:
堆积排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
步骤:
(比较复杂,自己上网查吧)
排序效果:
介绍:
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。
排序效果:
介绍:
冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
步骤:
排序效果:
介绍:
插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
步骤:
排序效果:
(暂无)
介绍:
希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
1、插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
2、但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位>
排序效果:
对程序员来说,递归应该是一个与生俱来的思想(a built-in thought),可以通过一个简单的例子来说明。
问题: 有n步台阶,一次只能上1步或2步,共有多少种走法。
步骤1:找到走完前n步台阶和前n-1步台阶之间的关系。
为了走完n步台阶,只有两种方法:从n-1步台阶爬1步走到或从n-2步台阶处爬2步走到。如果f(n)是爬到第n步台阶的方法数,那么f(n) = f(n-1) + f(n-2)。
步骤2: 确保开始条件是正确的。
f(0) = 0;
f(1) = 1;
public static int f(int n){ if(n <= 2) return n; int x = f(n-1) + f(n-2); return x; }
递归方法的时间复杂度是n的指数级,因为有很多冗余的计算,如下:
f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
直接的想法是将递归转换为迭代:
public static int f(int n) { if (n <= 2){ return n; } int first = 1, second = 2; int third = 0; for (int i = 3; i <= n; i++) { third = first + second; first = second; second = third; } return third; }
对这个例子而言,迭代花费的时间更少,你可能也想看看Recursion vs Iteration。
动态规划是解决下面这些性质类问题的技术:
爬台阶问题完全符合上面的四条性质,因此可以用动态规划法来解决。
public static int[] A = new int[100]; public static int f3(int n) { if (n <= 2) A[n]= n; if(A[n] > 0) return A[n]; else A[n] = f3(n-1) + f3(n-2);//store results so only calculate once! return A[n]; }
位操作符:
OR (|) | AND (&) | XOR (^) | Left Shift (<<) | Right Shift (>>) | Not (~) |
1|0=1 | 1&0=0 | 1^0=1 | 0010<<2=1000 | 1100>>2=0011 | ~1=0 |
获得给定数字n的第i位:(i从0计数并从右边开始)
public static boolean getBit(int num, int i){ int result = num & (1<<i); if(result == 0){ return false; }else{ return true; }
例如,获得数字10的第2位:
i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;
解决概率相关的问题通常需要很好的规划了解问题(formatting the problem),这里刚好有一个这类问题的简单例子:
一个房间里有50个人,那么至少有两个人生日相同的概率是多少?(忽略闰年的事实,也就是一年365天)
计算某些事情的概率很多时候都可以转换成先计算其相对面。在这个例子里,我们可以计算所有人生日都互不相同的概率,也就 是:365/365 * 364/365 * 363/365 * … * (365-49)/365,这样至少两个人生日相同的概率就是1 – 这个值。
public static double caculateProbability(int n){ double x = 1; for(int i=0; i<n; i++){ x *= (365.0-i)/365.0; } double pro = Math.round((1-x) * 100); return pro/100;
calculateProbability(50) = 0.97
组合和排列的区别在于次序是否关键。
如果你有任何问题请在下面评论。
参考/推荐资料:
1. Binary tree
2. Introduction to Dynamic Programming
3. UTSA Dynamic Programming slides
4. Birthday paradox
5. Cracking the Coding Interview: 150 Programming Interview Questions and Solutions, Gayle Laakmann McDowell
原文:http://www.cnblogs.com/wzhiq896/p/5924800.html