首页 > 其他 > 详细

ACE_Message_Block消息数据类

时间:2016-10-09 00:13:39      阅读:210      评论:0      收藏:0      [点我收藏+]

  ACE_Message_Block

  ACE_Message_Block用于构建“固定”和“可变”长度的消息。ACE_Message_Block可以将多条消息连接在一起,形成一个链表,从而支持复合消息。ACE_Message_Block内部结构图如下:

技术分享技术分享

1:ACE_Message_Block初始化与释放

  初始化一般用以下操作实现:

ACE_NEW_NORETURN (m_pRcvmb,ACE_Message_Block (1024));

ACE_Message_Block* p = new ACE_Message_Block(1024);

   这两种方式都可以实现ACE_Message_Block的new操作。ACE定义了一组申请内存的宏,内部都实现了new操作符。这组宏定义在如下:

#  if defined (ACE_HAS_NEW_NOTHROW)
#    define ACE_NEW_RETURN(POINTER,CONSTRUCTOR,RET_VAL)    do { POINTER = new (ACE_nothrow) CONSTRUCTOR;      if (POINTER == 0) { errno = ENOMEM; return RET_VAL; }    } while (0)
#    define ACE_NEW(POINTER,CONSTRUCTOR)    do { POINTER = new(ACE_nothrow) CONSTRUCTOR;      if (POINTER == 0) { errno = ENOMEM; return; }    } while (0)
#    define ACE_NEW_NORETURN(POINTER,CONSTRUCTOR)    do { POINTER = new(ACE_nothrow) CONSTRUCTOR;      if (POINTER == 0) { errno = ENOMEM; }    } while (0)

#  else

#    define ACE_NEW_RETURN(POINTER,CONSTRUCTOR,RET_VAL)    do { try { POINTER = new CONSTRUCTOR; }      catch (ACE_bad_alloc) { ACE_del_bad_alloc errno = ENOMEM; POINTER = 0; return RET_VAL; }    } while (0)

#    define ACE_NEW(POINTER,CONSTRUCTOR)    do { try { POINTER = new CONSTRUCTOR; }      catch (ACE_bad_alloc) { ACE_del_bad_alloc errno = ENOMEM; POINTER = 0; return; }    } while (0)

#    define ACE_NEW_NORETURN(POINTER,CONSTRUCTOR)    do { try { POINTER = new CONSTRUCTOR; }      catch (ACE_bad_alloc) { ACE_del_bad_alloc errno = ENOMEM; POINTER = 0; }    } while (0)
#  endif /* ACE_HAS_NEW_NOTHROW */

   值得注意的是,ACE_Message_Block有多个构造函数,最常用的一个构造函数定义为:

  ACE_Message_Block (size_t size,
                     ACE_Message_Type type = MB_DATA,
                     ACE_Message_Block *cont = 0,
                     const char *data = 0,
                     ACE_Allocator *allocator_strategy = 0,
                     ACE_Lock *locking_strategy = 0,
                     unsigned long priority = ACE_DEFAULT_MESSAGE_BLOCK_PRIORITY,
                     const ACE_Time_Value &execution_time = ACE_Time_Value::zero,
                     const ACE_Time_Value &deadline_time = ACE_Time_Value::max_time,
                     ACE_Allocator *data_block_allocator = 0,
                     ACE_Allocator *message_block_allocator = 0);

   在该构造函数内部,ACE_Message_Block调用了init_i函数,init_i内部调用了ACE_Data_Block的构造函数。ACE_Data_Block定义了一个char* base_ 指针,其构造函数会调用C风格的malloc方法为base_申请大小为size的空间。也就是说,ACE_Message_Block真正的数据载体是ACE_Data_Block。其实现代码为:

//ACE_Message_Block内部申请ACE_Data_Block的空间
ACE_NEW_MALLOC_RETURN (db,static_cast<ACE_Data_Block *> (data_block_allocator->malloc (sizeof (ACE_Data_Block))),
                             ACE_Data_Block (size,
                                             msg_type,
                                             msg_data,
                                             allocator_strategy,
                                             locking_strategy,
                                             flags,
                                             data_block_allocator),-1);

//ACE_Data_Block内部为base_申请大小为size的空间
if (msg_data == 0)
    {
      ACE_ALLOCATOR (this->base_,(char *) this->allocator_strategy_->malloc (size));
#if defined (ACE_INITIALIZE_MEMORY_BEFORE_USE)
      (void) ACE_OS::memset (this->base_,\0,size);
#endif /* ACE_INITIALIZE_MEMORY_BEFORE_USE */
    }

   释放ACE_Message_Block,调用release方法即可。release方法会将消息的引用计数减1,如果消息的引用计数为0,则释放该消息。

2:ACE_Message_Block写入数据  

   ACE_Message_Block内部有读地址和写地址,ACE_Message_Block的长度是写地址减去读地址的值。其定义为:

//读写地址
  /// Pointer to beginning of next read.
  size_t rd_ptr_;
  /// Pointer to beginning of next write.
  size_t wr_ptr_;

//长度
ACE_Message_Block::length (void) const
{
  ACE_TRACE ("ACE_Message_Block::length");
  return this->wr_ptr_ - this->rd_ptr_;
}

   rd_ptr()和wr_ptr()分别用于设置和获取读写地址的值。

  将buffer中的数据复制到ACE_Message_Block中,需要调用copy函数。copy函数内部用memcpy实现,将buf的size个BYTE拷贝到以wr_ptr_地址为首的地址上,并将wr_ptr_的值加上size,其实现为:

int ACE_Message_Block::copy (const char *buf, size_t n)
{
  ACE_TRACE ("ACE_Message_Block::copy");
  /*size_t len = static_cast<size_t> (this->end () - this->wr_ptr ());*/
  // Note that for this to work correct, end () *must* be >= mark ().
  size_t len = this->space ();
  if (len < n)
    {
      errno = ENOSPC;
      return -1;
    }
  else
    {
      (void) ACE_OS::memcpy (this->wr_ptr (),buf,n);
      this->wr_ptr (n);
      return 0;
    }
}

 

3:ACE_Message_Block复制操作

  ACE_Message_Block提供了clone和duplicate两个操作,clone是深复制,duplicate是浅复制,仅为消息的引用计数加1。

4:ACE_Message_Block消息链

  ACE_Message_Block内部定义3个指针:

/// Pointer to next message block in the chain.
  ACE_Message_Block *cont_;
  /// Pointer to next message in the list.
  ACE_Message_Block *next_;
  /// Pointer to previous message in the list.
  ACE_Message_Block *prev_;

  分别用重载函数cont()、next()、prev()来设置和获取邻居消息。其中,cont用于将复合消息连接在一起,next和prev用于连接消息链上的简单消息。

  一个消息链的示例如下:

#include "ace/OS.h"
#include "ace/Message_Block.h"

int main (int argc, char *argv[])
{
  ACE_Message_Block *head = new ACE_Message_Block (BUFSIZ);
  ACE_Message_Block *mblk = head;

  for (;;) {
    ssize_t nbytes = ACE::read_n (ACE_STDIN,mblk->wr_ptr (),mblk->size () ) ;
    if (nbytes <=  0)
      break; // Break out at EOF or error.
    // Advance the write pointer to the end of the buffer.
    mblk->wr_ptr (nbytes);
    // Allocate message block and chain it at the end of list.
    mblk->cont (new ACE_Message_Block (BUFSIZ));
    mblk = mblk->cont ();
  }
  // Print the contents of the list to the standard output.
  for (mblk = head; mblk != 0; mblk = mblk->cont ())
    ACE::write_n (ACE_STDOUT, mblk->rd_ptr (), mblk->length ());
  head->release (); // This releases all the memory in the chain.
  return 0;
}

 C++ Network Programming. Volume 1: Mastering Complexity with ACE and Patterns 

ACE_Message_Block消息数据类

原文:http://www.cnblogs.com/hgwang/p/5940168.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!