现在有这样的一个场景:给你一张行人的矩形图片, 要你识别出该行人的性别特侦。
分析:
(1),行人的姿态各异,变化多端。很难提取图像的特定特征
(2),正常人判别行人的根据是身材比例。(如果是冬天的情况下,行人穿着厚实,性别识别更加难)
solution:
针对难以提取特定特征的图像,可以采用卷积神经网络CNN去自动提取并训练。
数据准备:
采用 PETA数据集,Pedestrain Attribute Recognition At Far Distance。 该数据集一共包含了19000张标记了行人穿着及性别信息的图片。
Peta dataset source url: http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
数据处理:
针对下载解压之后的数据集,采用的流程是:
(1)对每一张图片进行resize, resize到特定的大小(实验中定为50*150),
(2)对正类负类样本的不均衡情况,进行rebalance处理,实验中对少数类样本进行随机选择n张进行data augmentation之后重新加入到dataset中。
(3)划分training set和testing set, 根据train/test ratio将整个数据样本随机分为两部分。
(4)对training set 进行data augmentation 处理。 扩大训练数据量。 (操作包括: 翻转,滤波等)
#!/usr/bin/env python #-*- encoding: utf-8 -*- ######### ## The python code to preprocess the images and resize them into (50, 150) ## Date: 2016-09-19 ######### import os, sys, cv2 import numpy as np import random image_cnt = 0 MIN_HEIGHT = 120 MIN_WIDTH = 40 targetLabel = [] positive_cnt = 0 negative_cnt = 0 def readImage( filePath , targetDir ): global image_cnt, positive_cnt, negative_cnt global targetLabel if not os.path.isdir( filePath ): print(‘{} is not a dir‘.format(filePath)) return None listFile = os.listdir( filePath ) labelDict = {} with open( filePath + ‘Label.txt‘, ‘r‘) as reader: for line in reader: lines = line.split() for i in range(1, len(lines)): if lines[i] == ‘personalMale‘: label = 1 elif lines[i] == ‘personalFemale‘: label = 0 else: continue labelDict[lines[0]] = label break for i in range(len(listFile)): if len(listFile[i]) > 4 and (listFile[i][-4:] == ‘.bmp‘ or listFile[i][-4:] == ‘.jpg‘ or listFile[i][-4:] == ‘.png‘ or listFile[i][-5:] == ‘.jpeg‘): imageName = filePath + listFile[i] img = cv2.imread( imageName ) if not img.data: continue height, width = img.shape[:2] if height < MIN_HEIGHT or width < MIN_WIDTH: continue fileName = str( image_cnt ) + ‘.jpeg‘ identity = listFile[i].find(‘_‘) if identity == -1: identity = len(listFile[i]) idd = listFile[i][:identity] if labelDict.has_key( idd ) : targetLabel.append([ fileName, labelDict[idd]]) if labelDict[idd] == 0: negative_cnt += 1 else: positive_cnt += 1 img = cv2.resize(img, (50, 150), interpolation=cv2.INTER_CUBIC) cv2.imwrite(targetDir + fileName, img) image_cnt += 1 else: print(‘file {} do not have label‘.format(listFile[i]) ) ####### pyramid operator def MinAndEnlarge(img, Minus_pixel = 3): img = img[(3*Minus_pixel):(150 - 3*Minus_pixel), Minus_pixel:(50 - Minus_pixel), :] img = cv2.resize(img, (50, 150), interpolation = cv2.INTER_CUBIC ) return img ####### rotate operator def Flip(img, operator = 1): if operator == 1: img = cv2.flip(img, 1) else: img = cv2.flip(img, 0) return img ####### median blurring the image def Blur(img, kernel_size=5): img = cv2.medianBlur(img, kernel_size) return img def EnlargeData( filePath , targetDir ): global image_cnt, targetLabel total_sample = len(targetLabel) for i in range(total_sample): img = cv2.imread( filePath + targetLabel[i][0] ) fileLabel = targetLabel[i][1] if not img.data: print(‘no exits image file {}‘.format( filePath + targetLabel[i][0]) ) # img1 = MinAndEnlarge(img, 3) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img1 ) image_cnt += 1 targetLabel.append( [fileName, fileLabel] ) # img2 = Flip(img1) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img2 ) image_cnt += 1 targetLabel.append( [fileName, fileLabel] ) # img3 = Blur(img, 5) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img3 ) image_cnt += 1 targetLabel.append( [fileName, fileLabel] ) # img4 = Blur(img1, 5) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img4 ) image_cnt += 1 targetLabel.append([fileName, fileLabel]) # img5 = Blur(img2, 5) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img5 ) image_cnt += 1 targetLabel.append([fileName, fileLabel]) print(‘The total number of images is {}‘.format(image_cnt)) def saveLabel( targetDir ): global targetLabel with open(targetDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(targetLabel)): writer.write( str( targetLabel[i][0] ) + ‘ ‘ + str(targetLabel[i][1]) + ‘\n‘ ) ##### ReBalance operator ####### num (the number of minority class should added) ####### n_or_p (the label of minority class) ####### op_chose( 1--symmetrical flip; 0--rotate image; ) def ReBalance( targetDir, num, n_or_p, op_chose = 0): global targetLabel, image_cnt total_sample = len(targetLabel) Contain = {} while 1: if num <= 0: break key_id = random.randint(0, total_sample-1) if Contain.has_key( key_id ) or targetLabel[key_id][1] != n_or_p: continue img = cv2.imread( targetDir + targetLabel[key_id][0] ) if op_chose == 0: img = cv2.flip(img, 1) elif op_chose == 1: img = cv2.flip(img, 0) fileName = str(image_cnt) + ‘.jpeg‘ cv2.imwrite(targetDir + fileName, img) image_cnt += 1 targetLabel.append([fileName, n_or_p]) num -= 1 print(‘Finish add {} images‘.format(image_cnt - total_sample)) print(‘Now the class is balanced and total num is {}‘.format(image_cnt)) print(‘image_cnt is {} and len(_targetLabel_) is {} ‘.format(image_cnt, len(targetLabel))) def divide( targetDir, trainDir, testDir, test_ratio = 0.20): global targetLabel total_sample = len(targetLabel) assert( test_ratio < 1) test_num = int(total_sample * test_ratio ) test_half_num = test_num // 2; ml_cnt = 0; fm_cnt = 0 testLabel = [] ; trainLabel = [] for i in range(total_sample): if ml_cnt < test_half_num and targetLabel[i][1] == 1: ml_cnt += 1 img = cv2.imread( targetDir + targetLabel[i][0] ) cv2.imwrite( testDir + targetLabel[i][0], img ) testLabel.append(targetLabel[i]) elif fm_cnt < test_half_num and targetLabel[i][1] == 0: fm_cnt += 1 img = cv2.imread( targetDir + targetLabel[i][0] ) cv2.imwrite( testDir + targetLabel[i][0], img ) testLabel.append(targetLabel[i]) else: img = cv2.imread( targetDir + targetLabel[i][0] ) cv2.imwrite( trainDir + targetLabel[i][0], img ) trainLabel.append(targetLabel[i]) # train with open( trainDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(trainLabel)): writer.write( str( trainLabel[i][0] ) + ‘ ‘ + str(trainLabel[i][1]) + ‘\n‘ ) with open( testDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(testLabel)): writer.write( str(testLabel[i][0]) + ‘ ‘ + str(testLabel[i][1]) + ‘\n‘) print(‘has divide into train with {} samples and test with {} samples‘.format(len(trainLabel), len(testLabel)) ) return trainLabel, testLabel def DivideSet( targetDir, trainDir, testDir, test_ratio = 0.20): global targetLabel total_sample = len(targetLabel) assert( test_ratio < 1 ) test_num = int(test_ratio * total_sample) test_half_num = test_num //2 ; ml_cnt = test_half_num; fm_cnt = test_half_num testLabel = [] ; trainLabel = [] ; testDict = {} while ml_cnt > 0 or fm_cnt > 0: idd = random.randint(0, total_sample-1) if testDict.has_key( targetLabel[idd][0] ): continue if targetLabel[idd][1] == 1 and ml_cnt > 0: img = cv2.imread( targetDir + targetLabel[idd][0] ) cv2.imwrite( testDir + targetLabel[idd][0], img ) testLabel.append( targetLabel[idd] ) testDict[targetLabel[idd][0]] = idd ml_cnt -= 1 if targetLabel[idd][1] == 0 and fm_cnt > 0: img = cv2.imread( targetDir + targetLabel[idd][0] ) cv2.imwrite( testDir + targetLabel[idd][0], img ) testLabel.append( targetLabel[idd] ) testDict[targetLabel[idd][0]] = idd fm_cnt -= 1 for i in range(total_sample): if not testDict.has_key( targetLabel[i][0] ): trainLabel.append( targetLabel[i] ) img = cv2.imread( targetDir + targetLabel[i][0] ) cv2.imwrite( trainDir + targetLabel[i][0], img ) ## save the trainset and testset with open( trainDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(trainLabel)): writer.write( str( trainLabel[i][0] ) + ‘ ‘ + str(trainLabel[i][1]) + ‘\n‘ ) with open( testDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(testLabel)): writer.write( str(testLabel[i][0]) + ‘ ‘ + str(testLabel[i][1]) + ‘\n‘) print(‘has divide into train with {} samples and test with {} samples‘.format(len(trainLabel), len(testLabel)) ) return trainLabel, testLabel def EnlargeTrain( fileDir, targetDir, trainLabel , start_cnt): total_sample = len(trainLabel) new_cnt = start_cnt for i in range(total_sample): img = cv2.imread( fileDir + trainLabel[i][0] ) fileLabel = trainLabel[i][1] if not img.data: print(‘no exits image file {}‘.format( fileDir + trainLabel[i][0]) ) continue # img1 = MinAndEnlarge(img, 3) fileName = str(new_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img1 ) new_cnt += 1 trainLabel.append( [fileName, fileLabel] ) # img2 = Flip(img1) fileName = str(new_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img2 ) new_cnt += 1 trainLabel.append( [fileName, fileLabel] ) # img3 = Blur(img, 5) fileName = str(new_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img3 ) new_cnt += 1 trainLabel.append( [fileName, fileLabel] ) # img4 = Blur(img1, 5) fileName = str(new_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img4 ) new_cnt += 1 trainLabel.append([fileName, fileLabel]) # img5 = Blur(img2, 5) fileName = str(new_cnt) + ‘.jpeg‘ cv2.imwrite( targetDir + fileName, img5 ) new_cnt += 1 trainLabel.append([fileName, fileLabel]) print(‘The total number of training images is {}‘.format(new_cnt)) with open( targetDir + ‘label.txt‘, ‘w‘) as writer: for i in range(len(trainLabel)): writer.write( str( trainLabel[i][0] ) + ‘ ‘ + str(trainLabel[i][1]) + ‘\n‘ ) print(‘The trainLabel size is {}‘.format(len(trainLabel)) ) if __name__ == ‘__main__‘: fileHead = ‘/home/zhangyd/source/PETA_dataset/‘ filePath = [‘3DPeS‘, ‘CAVIAR4REID‘, ‘CUHK‘, ‘GRID‘,‘MIT‘, ‘PRID‘,‘SARC3D‘,‘TownCentre‘, ‘VIPeR‘,‘i-LID‘] savePath = ‘/home/zhangyd/source/peta/‘ for i in range(len(filePath)): path = fileHead + filePath[i] + ‘/archive/‘ print (‘runing dataset {}‘.format(filePath[i]) ) readImage( path, savePath ) print (‘The cnt is {}‘.format( image_cnt )) #EnlargeData( savePath, savePath ) saveLabel( savePath ) print( ‘we have {} positive labels and {} negative labels ‘.format( positive_cnt, negative_cnt )) if positive_cnt > negative_cnt: add_num = positive_cnt - negative_cnt ReBalance( savePath, add_num, 0, 0) else: add_num = negative_cnt - positive_cnt ReBalance( savePath, add_num, 1, 0) print(‘The total dataset is in {}‘.format(savePath)) TrainsavePath = ‘/home/zhangyd/source/peta_v1/petaTrain/‘ TestsavePath = ‘/home/zhangyd/source/peta_v1/petaTest/‘ trainLabel, testLabel = DivideSet(savePath, TrainsavePath, TestsavePath, 0.2 ) start_cnt = len(targetLabel) EnlargeTrain( TrainsavePath, TrainsavePath, trainLabel, start_cnt ) print(‘the end‘)
实验
使用caffe的create_lmdb.sh 转换图像数据 成 imbd数据集。
定义 prototxt 等信息。
CNN 的结构是:
训练的参数设置:
# The train/test net protocol buffer definition net: "examples/peta/petanet_train_test.prototxt" # test_iter specifies how many forward passes the test should carry out. # In the case of MNIST, we have test batch size 100 and 100 test iterations, # covering the full 10,000 testing images. test_iter: 100 # Carry out testing every 500 training iterations. test_interval: 500 # The base learning rate, momentum and the weight decay of the network. base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 # The learning rate policy lr_policy: "inv" gamma: 0.0001 power: 0.75 # Display every 100 iterations display: 100 # The maximum number of iterations max_iter: 10000 # snapshot intermediate results snapshot: 5000 snapshot_prefix: "examples/peta/petanet" # solver mode: CPU or GPU solver_mode: GPU
使用论文《Learned vs. Hand-Crafted Features for Pedestrian Gender Recognition》中的网络结构,取得了较好的训练结果:
I0922 00:07:32.204310 16398 solver.cpp:337] Iteration 10000, Testing net (#0) I0922 00:07:34.001411 16398 solver.cpp:404] Test net output #0: accuracy = 0.8616 I0922 00:07:34.001471 16398 solver.cpp:404] Test net output #1: loss = 0.721973 (* 1 = 0.721973 loss) I0922 00:07:34.001479 16398 solver.cpp:322] Optimization Done. I0922 00:07:34.001485 16398 caffe.cpp:254] Optimization Done.
实验分析:
因为网络不大,网络也比较简单,在GPU下进行训练,消耗的显存大概是几百M,不到1G的显存。网络结构经典,也取得较好的训练结果。
我的拓展: 自己设计的CNN网络
吸取了GoogleNet的网络特征, 引入inception, 重新设计网络。
是两个 inception 组成, 后面加上一个FC层。
其中Snapshot的网络结构prototxt文件是:
name: "petaNet" layer { name: "data" type: "Input" top: "data" input_param { shape: { dim: 1 dim: 3 dim: 50 dim: 150 } } } ### ------------ layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu1" type: "ReLU" bottom: "conv1" top: "conv1" } ##------- # Inception 3a ##------- layer { name: "inc1_conv1" bottom: "conv1" top: "inc1_conv1" type: "Convolution" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 7 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv1_relu" type: "ReLU" bottom: "inc1_conv1" top: "inc1_conv1" } layer { name: "inc1_conv2_1" type: "Convolution" bottom: "conv1" top: "inc1_conv2_1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 50 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv2_1_relu" type: "ReLU" bottom: "inc1_conv2_1" top: "inc1_conv2_1" } layer { name: "inc1_conv2_2" type: "Convolution" bottom: "inc1_conv2_1" top: "inc1_conv2_2" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 50 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv2_2_relu" type: "ReLU" bottom: "inc1_conv2_2" top: "inc1_conv2_2" } layer { name: "inc1_conv2_3" type: "Convolution" bottom: "inc1_conv2_2" top: "inc1_conv2_3" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 50 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv2_3_relu" type: "ReLU" bottom: "inc1_conv2_3" top: "inc1_conv2_3" } layer { name: "inc1_conv3_1" type: "Convolution" bottom: "conv1" top: "inc1_conv3_1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 5 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv3_1_relu" type: "ReLU" bottom: "inc1_conv3_1" top: "inc1_conv3_1" } layer { name: "inc1_conv3_2" type: "Convolution" bottom: "inc1_conv3_1" top: "inc1_conv3_2" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc1_conv3_2_relu" type: "ReLU" bottom: "inc1_conv3_2" top: "inc1_conv3_2" } layer { name: "inc1_concat" type: "Concat" bottom: "inc1_conv1" bottom: "inc1_conv2_3" bottom: "inc1_conv3_2" top: "inc1_concat" } #-----end of Inception 3a layer { name: "pool1" type: "Pooling" bottom: "inc1_concat" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } ##------ # Inception 2B ##------ layer { name: "inc2_conv1_1" type: "Convolution" bottom: "pool1" top: "inc2_conv1_1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 120 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc2_conv1_1_relu" type: "ReLU" bottom: "inc2_conv1_1" top: "inc2_conv1_1" } layer { name: "inc2_conv1_2" type: "Convolution" bottom: "inc2_conv1_1" top: "inc2_conv1_2" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 120 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc2_conv1_2_relu" type: "ReLU" bottom: "inc2_conv1_2" top: "inc2_conv1_2" } layer { name: "inc2_conv2" type: "Convolution" bottom: "pool1" top: "inc2_conv2" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 120 kernel_size: 5 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "inc2_conv2_relu" type: "ReLU" bottom: "inc2_conv2" top: "inc2_conv2" } layer { name: "inc2_concat" type: "Concat" bottom: "inc2_conv1_2" bottom: "inc2_conv2" top: "inc2_concat" } ##----end of Inception 2B layer { name: "pool2" type: "Pooling" bottom: "inc2_concat" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "fc1" type: "InnerProduct" bottom: "pool2" top: "fc1" param { lr_mult: 1 } param { lr_mult: 2 } inner_product_param { num_output: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } #### ---------- layer { name: "prob" type: "Softmax" bottom: "fc1" top: "prob" }
取得的效果比论文中的网络结构差点, 训练结果是:
I0927 00:11:42.485725 20295 solver.cpp:317] Iteration 10000, loss = 0.0678897 I0927 00:11:42.485771 20295 solver.cpp:337] Iteration 10000, Testing net (#0) I0927 00:12:06.291497 20295 solver.cpp:404] Test net output #0: accuracy = 0.8448 I0927 00:12:06.291554 20295 solver.cpp:404] Test net output #1: loss = 0.614111 (* 1 = 0.614111 loss) I0927 00:12:06.291563 20295 solver.cpp:322] Optimization Done. I0927 00:12:06.291568 20295 caffe.cpp:254] Optimization Done.
实验分析:
因为该网络的组成较为复杂, inception包含着较大的子网络, 因为训练的时候,需要消耗GPU显存为3G多。训练时间也较长些。
reference:
Learned vs. Hand-Crafted Features for Pedestrian Gender Recognition Grigory Antipov,Sid-Ahmed Berrani
原文:http://www.cnblogs.com/zhang-yd/p/5966293.html