首页 > 其他 > 详细

Data Cleaning 1

时间:2016-10-19 09:26:59      阅读:291      评论:0      收藏:0      [点我收藏+]

1. Read mutiple data files;

  import pandas as pd

  data_files = [
  "ap_2010.csv",
  "class_size.csv",
  "demographics.csv",
  "graduation.csv",
  "hs_directory.csv",
  "sat_results.csv"
  ]

  data = {}

  for f in data_files:
  file = pd.read_csv("schools/{0}".format(f)) #Format string syntax
  f = f.replace(".csv","")#Delete all the .csv and save as file name
  data[f] = file

2. Read .txt file and combine function:

  all_survey = pd.read_csv("schools/survey_all.txt",delimiter = "\t", encoding = "windows-1252") #what is the meaning of delimiter and encoding?
  d75_survey = pd.read_csv("schools/survey_d75.txt",delimiter = "\t", encoding = "windows-1252") 
  survey = pd.concat([all_survey,d75_survey],axis = 0) #combine function

Data Cleaning 1

原文:http://www.cnblogs.com/kingoscar/p/5975884.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!