首页 > 其他 > 详细

【leedcode】 Longest Palindromic Substring

时间:2016-10-20 21:59:08      阅读:309      评论:0      收藏:0      [点我收藏+]
Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000,
and there exists one unique longest palindromic substring.

https://leetcode.com/problems/longest-palindromic-substring/

求最大回文的长度,其实这道题比上一道有意思。

方法1 循环查询 (该方案为O(N*N*N))

public static boolean isPalindrome(String s, int start, int end) {
		if (((end - start) & 0x1) == 1) {
			while (start + 1 != end) {
				if (s.charAt(start++) != s.charAt(end--)) {
					return false;
				}
			}
			return s.charAt(start) == s.charAt(end);
		} else {
			while (start != end) {
				if (s.charAt(start++) != s.charAt(end--)) {
					return false;
				}

			}
		}

		return true;
	}

	public static String longestPalindrome_1(String s) {
		int len = s.length();
		if (len < 2) {
			return s;
		}
		for (int i = 0, end=len/2; i < end; i++) {
			for (int j = len - 1, k = i; k > -1; j--, k--) {
				if (k == j && j == i) {
					return "";
				}
				if (isPalindrome(s, k, j)) {
					return s.substring(k, j + 1);
				}
			}
		}

		return "";
	}

方法2 动态规划 (该方案为O(N*N))

由于没学过动态规划,特意去学习了一下

/**
	 * 
	 * 1. 初始条件:
空串 看作是回文的最初始条件,LP[i][i-1]=1。这作为初始状态,并不认为是有回文。
单字符串 是直接认为有回文的,LP[i][i]=1。 
2. 状态转移:
若LP[i][j]=1且a[i-1]==a[j+1] ,那么有LP[i-1][j+1]=1,否则LP[i-1][j+1]=0
	 * @param s
	 * @return
	 */
	public static String longestPalindromeDP_2(String s) {
		int n = s.length();
		int longestBegin = 0;
		int maxLen = 1;
		boolean[][] table = new boolean[n][n];
		// 单字符
		for (int i = 0; i < n; i++) {
			table[i][i] = true;
		}
		// 双字符
		for (int i = 0; i < n - 1; i++) {
			if (s.charAt(i) == s.charAt(i + 1)) {
				table[i][i + 1] = true;
				longestBegin = i;
				maxLen = 2;
			}
		}
		// 子串长度
		for (int len = 3; len <= n; len++) {
			// 子串的起始位置
			for (int i = 0; i < n - len + 1; i++) {
				// 子串的结束位置
				int j = i + len - 1;
				// DP条件
				if (table[i + 1][j - 1] && s.charAt(i) == s.charAt(j) ) {
					table[i][j] = true;
					longestBegin = i;
					maxLen = len;
				}
			}
		}
		return s.substring(longestBegin, longestBegin + maxLen);
	}

方法3 中心扩展,方法1的优化版本 (该方案为O(N*N))

static class Pair {
		int s;
		int e;
		
		public Pair(int s, int e) {
			this.s = s;
			this.e = e;
		}
		
		int length() {
			return e - s + 1;
		}
	}

public static Pair expandAroundCenter2(String s, int c1, int c2) {
		int l = c1, r = c2;
		int n = s.length();
		while (l > -1 && r < n && s.charAt(l) == s.charAt(r)) {
			l--;
			r++;
		}
		return new Pair(l + 1, r);
	}

	public static String longestPalindromeSimple2(String s) {
		int n = s.length();
		if (n == 0)
			return "";
		Pair longest = new Pair(0, 1); // a single char itself is a
											// palindrome
		int i = 0;
		// 偶回文
		Pair p2 = expandAroundCenter2(s, i, i + 1);
		if (p2.length() > longest.length())
			longest = p2;
		for (i = 1; i < n - 1; i++) {
			// 奇回文
			Pair p1 = expandAroundCenter2(s, i, i);
			if (p1.length() > longest.length())
				longest = p1;
			// 偶回文
			p2 = expandAroundCenter2(s, i, i + 1);
			if (p2.length() > longest.length())
				longest = p2;
		}
		return s.substring(longest.s,longest.e);
	}

方法.后缀数组, logN * O(n)

 

方法5.Manacher算法, O(n)

// ^ and $ 避免空指针
	 static StringBuilder preProcess(String s) {
		int n = s.length();
		StringBuilder buff = new StringBuilder("^");
		for (int i = 0; i < n; i++) {
			buff.append("#").append(s.charAt(i));
		}
		buff.append("#$");
		return buff;
	}
public static String longestPalindrome(String s) {
		if (s.length() < 2) {
			return s;
		}
		// 插入到^#c#a#b#b#a#$
		StringBuilder T = preProcess(s);
		int length = T.length();
		int[] p = new int[length]; //存储每一个位置的长度
		int C = 0, R = 0;

		for (int i = 1; i < length - 1; i++) {
			
			int i_mirror = C - (i - C);
			int diff = R - i;
//			prettyPrint(T, C, R, i, i_mirror, p);
			if (diff >= 0)// 当前i在C和R之间,可以利用回文的对称属性
			{
				// R 能移动已经判断是相等过
				if (p[i_mirror] < diff)// i的对称点的回文长度在C的大回文范围内部
				{
					p[i] = p[i_mirror];
//					System.out.println(T.charAt(i_mirror) + "<<$>>"+ T.charAt(i));
				} else {
					p[i] = diff;
					// i处的回文可能超出C的大回文范围了
					while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
						p[i]++;
					}
					C = i;
					R = i + p[i];
				}
			} else {
				p[i] = 0;
				while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
					p[i]++;
				}
				C = i;
				R = i + p[i];
			}
		}

		int maxLen = 0;
		int centerIndex = 0;
		// 最大的索引
		for (int i = 2; i < length - 1; i+=1) {
			if (p[i] > maxLen) {
				maxLen = p[i];
				centerIndex = i;
			}
		}
		// 计算起始地址
		centerIndex = (centerIndex - 1 - maxLen) / 2;
		return s.substring(centerIndex, centerIndex + maxLen);
	}

  

 

【leedcode】 Longest Palindromic Substring

原文:http://www.cnblogs.com/hero4china/p/5982476.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!