首页 > 其他 > 详细

复分析复习9——全纯函数各阶导数在紧集上的一致估计

时间:2014-05-17 20:27:13      阅读:407      评论:0      收藏:0      [点我收藏+]

    复习8中我们得到单位分解定理,现在便可以推导一个全纯函数各阶导数在紧集上的一致估计了.

我们先来证明一个引理,事实上他是单位分解定理的一个简单推论:设$\Omega\subset\mathbb C$为开集,$K$为$\Omega$的紧致子集,$V$为$K$的开邻域且$V\subset\Omega$,则存在$\varphi\in\mathscr D(V)$使得

1)$0\leq\varphi\leq1$;

2)在$V$的某邻域上有$\varphi\equiv1$.

证    对任意的$\varepsilon>0$,令

V(K,ε)?{zC:ρ(K,z)>ε}bubuko.com,布布扣

我们可以选取适当的$\varepsilon$使得

K?V(K,ε)?Vbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣(K,2ε)?Vbubuko.com,布布扣

那么集合$\Omega_{1}=V(K,2\varepsilon)$和$\Omega_{2}=\Omega\setminus\overline{V}(K,\varepsilon)$构成了$\Omega$的一个开覆盖,根据单位分解定理,存在着序列$\{f_{n}(z)\}_{n\in\mathbb N^*}\subset\mathscr D(\Omega)$满足单位分解定理的三个性质.令

φ(z)=bubuko.com,布布扣suppfbubuko.com,布布扣ibubuko.com,布布扣(z)?Ωbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(z)bubuko.com,布布扣

显然$\varphi(z)\in\mathscr D(\Omega)$且

0φ(z)1bubuko.com,布布扣

另一方面注意到若${\rm supp}f_{j}(z)\not\subset\Omega_{1}$,则必有

suppfbubuko.com,布布扣jbubuko.com,布布扣(z)?Ωbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣

因此在$\overline{V}(K,\varepsilon)$上恒有

fbubuko.com,布布扣jbubuko.com,布布扣(z)=0bubuko.com,布布扣

这样在$V(K,\varepsilon)$上

φ(z)=bubuko.com,布布扣iNbubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(z)1.bubuko.com,布布扣

全纯函数各阶导数在紧集上的一致估计:设区域$U\subset\mathbb C$,且$K$为$U$的紧子集,而$V$为$K$的邻域并且$\overline{V}$也是$U$的紧子集,那么我们有:对$U$中任意的全纯函数$f(z)$,都存在着数列$\{c_{n}\},n\in\mathbb N^*$使得

supbubuko.com,布布扣zKbubuko.com,布布扣|fbubuko.com,布布扣(n)bubuko.com,布布扣(z)|cbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣L(V)bubuko.com,布布扣bubuko.com,布布扣

其中$\|f\|_{L(V)}$定义为

1bubuko.com,布布扣A(V)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Vbubuko.com,布布扣|f(ζ)|dA.bubuko.com,布布扣

证    根据引理在$V$中存在$C^{\infty}$函数$g(z)$满足:在$V$上具有紧致的支集且在$K$的含于$V$的邻域内取值为1.那么对函数$fg$应用Pompeiu公式得

f(z)g(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣2πibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?Ububuko.com,布布扣f(ζ)g(ζ)bubuko.com,布布扣ζ?zbubuko.com,布布扣bubuko.com,布布扣dζ+1bubuko.com,布布扣2πibubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Ububuko.com,布布扣?(fg)bubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?dζdζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣ζ?zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣2πibubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Ububuko.com,布布扣(f?gbubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+g?fbubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)dζdζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣ζ?zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

注意到$f$全纯,从而$\frac{\partial f}{\partial\overline{z}}=0$.再者注意到$K_{1}={\rm supp}\frac{\partial g}{\partial\overline{z}}$是$V$的紧子集,而在$K$上,常有$\frac{\partial g}{\partial\overline{\zeta}}=0$,从而

ρ(Kbubuko.com,布布扣1bubuko.com,布布扣,K)>0bubuko.com,布布扣bubuko.com,布布扣(1)bubuko.com,布布扣bubuko.com,布布扣

因此当$z\in K$时

f(z)bubuko.com,布布扣?fbubuko.com,布布扣(n)bubuko.com,布布扣(z)bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣(n)bubuko.com,布布扣(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣2πibubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Kbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣f?gbubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?dζdζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣ζ?zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=n!bubuko.com,布布扣2πibubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Kbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣f?gbubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?dζdζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣(ζ?z)bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n!bubuko.com,布布扣2πbubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Kbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣|f(ζ)|?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?gbubuko.com,布布扣?ζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dζdζbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣(ζ?z)bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

由(1)可知,存在$M>0$使得

1bubuko.com,布布扣|ζ?z|bubuko.com,布布扣bubuko.com,布布扣<M,\foallzK,ζKbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣

另一方面$C^{\infty}$的函数$g$在紧集$K_{1}$上必然有$\left|\frac{\partial g}{\partial\overline{\zeta}}\right|$有界,因此存在常数$a_{n}$使得

bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣(n)bubuko.com,布布扣(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣2abubuko.com,布布扣nbubuko.com,布布扣?bubuko.com,布布扣Kbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣|f(ζ)|dAbubuko.com,布布扣?cbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣L(V)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

这样我们就给出了一个全纯函数$f(z)$在紧集$K$上各阶导数的一致估计了.

显然这个结果要比我们之前得到的估计式子要深刻的多.

复分析复习9——全纯函数各阶导数在紧集上的一致估计,布布扣,bubuko.com

复分析复习9——全纯函数各阶导数在紧集上的一致估计

原文:http://www.cnblogs.com/xixifeng/p/3732708.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!