题意:给定Q(1<=Q<=100000)个数A1,A2…AQ,以及可能多次进行的两个操作
1)对某个区间Ai……Aj的每个数都加n(n可变)
2)对某个区间Ai……Aj的数求和
分析:
树结点只存和,会导致每次加数时都要更新到叶子节点,速度太慢(O(nlog(n))),这是必须避免的
1.在增加时,如果要加的区间正好覆盖一个节点,则增加其节点的Inc值,不再往下走,否则要更新nSum(加上本次增量)
再将增量往下传。这样更新的复杂度就是O(log(n))
2.在查询时,如果待查区间不是正好覆盖一个节点,就将节点的Inc往下带,然后将Inc代表的所有增量累加到nSum上后将
Inc清0,接下来再往下查询。Inc往下带的过程也是区间分解过程,复杂度也是O(log(n))
#include<algorithm> #include<cstdio> #include<vector> #include<string> #include<string.h> #include<iostream> using namespace std; typedef long long LL; const int INF = 0x7FFFFFFF; const int maxn = 1e3 + 10; struct CNode { int L, R; CNode *pLeft, *pRight; long long nSum;//原来的和 long long Inc;//增量c的累加 }; CNode Tree[200010];//2倍叶子节点数目就够 int nCount = 0; int Mid(CNode*pRoot) { return (pRoot->L + pRoot->R) / 2; } void BuildTree(CNode *pRoot, int L, int R) { pRoot->L = L; pRoot->R = R; pRoot->nSum = 0; pRoot->Inc = 0; if (L == R) return; nCount++; pRoot->pLeft = Tree + nCount; nCount++; pRoot->pRight = Tree + nCount; BuildTree(pRoot->pLeft, L, (L + R) / 2); BuildTree(pRoot->pRight, (L + R) / 2 + 1, R); } void Insert(CNode *pRoot, int i, int v) { if (pRoot->L == i&&pRoot->R == i) { pRoot->nSum = v; return; } pRoot->nSum += v;//累加和 if (i <= Mid(pRoot)) Insert(pRoot->pLeft, i, v); else Insert(pRoot->pRight, i, v); } void Add(CNode * pRoot, int a, int b, long long c) { if (pRoot->L == a&&pRoot->R == b) { pRoot->Inc += c; return; } pRoot->nSum += c*(b - a + 1); if (b <= (pRoot->L + pRoot->R) / 2) Add(pRoot->pLeft, a, b, c); else if (a >= (pRoot->L + pRoot->R) / 2 + 1) Add(pRoot->pRight, a, b, c); else { Add(pRoot->pLeft, a, (pRoot->L + pRoot->R) / 2, c); Add(pRoot->pRight, (pRoot->L + pRoot->R) / 2 + 1, b, c); } } long long QuerynSum(CNode * pRoot, int a, int b) { if (pRoot->L == a&&pRoot->R == b) return pRoot->nSum + (pRoot->R - pRoot->L + 1)*pRoot->Inc; pRoot->nSum += (pRoot->R - pRoot->L + 1)*pRoot->Inc; Add(pRoot->pLeft, pRoot->L, Mid(pRoot), pRoot->Inc); Add(pRoot->pRight, Mid(pRoot) + 1, pRoot->R, pRoot->Inc); pRoot->Inc = 0; if (b <= Mid(pRoot)) return QuerynSum(pRoot->pLeft, a, b); else if (a >= Mid(pRoot) + 1) return QuerynSum(pRoot->pRight, a, b); else { return QuerynSum(pRoot->pLeft, a, Mid(pRoot)) + QuerynSum(pRoot->pRight, Mid(pRoot) + 1, b); } } int main() { int n, q, a, b, c; char cmd[10]; scanf("%d%d", &n, &q); int i, j, k; nCount = 0; BuildTree(Tree, 1, n); for (i = 1; i <= n;i++) { scanf("%d", &a); Insert(Tree, i, a); } for (i = 0; i < q; i++) { scanf("%s", cmd); if (cmd[0]==‘C‘) { scanf("%d%d%d", &a, &b, &c); Add(Tree, a, b, c); } else { scanf("%d%d", &a, &b); printf("%I64d\n", QuerynSum(Tree, a, b)); } } return 0; }
原文:http://www.cnblogs.com/demian/p/6082915.html