准备程序:
eclipse-3.3.2(这个版本的插件只能用这个版本的eclipse)
hadoop-0.20.2-eclipse-plugin.jar (在hadoop-0.20.2/contrib/eclipse-plugin目录下)
将hadoop-0.20.2-eclipse-plugin.jar 复制到eclipse/plugins目录下,重启eclipse。
Window -> Open Perspective -> Other 选择Map/Reduce,图标是个蓝色的象。
在eclipse下端,控制台旁边会多一个Tab,叫“Map/Reduce Locations”,在下面空白的地方点右键,选择“New Hadoop location...”,如图所示:
在弹出的对话框中填写如下内容:
Location name(取个名字)
Map/Reduce Master(Job Tracker的IP和端口,根据mapred-site.xml中配置的mapred.job.tracker来填写)
DFS Master(Name Node的IP和端口,根据core-site.xml中配置的fs.default.name来填写)
经过上一步骤,左侧“Project Explorer”中应该会出现配置好的HDFS,点击右键,可以进行新建文件夹、删除文件夹、上传文件、下载文件、删除文件等操作。
注意:每一次操作完在eclipse中不能马上显示变化,必须得刷新一下。
Window -> Preferences 选择 “Hadoop Map/Reduce”,点击“Browse...”选择Hadoop文件夹的路径。
这个步骤与运行环境无关,只是在新建工程的时候能将hadoop根目录和lib目录下的所有jar包自动导入。
File -> New -> Project 选择“Map/Reduce Project”,然后输入项目名称,创建项目。插件会自动把hadoop根目录和lib目录下的所有jar包导入。
File -> New -> Mapper 创建Mapper,自动继承mapred包里面的MapReduceBase并实现Mapper接口。
注意:这个插件自动继承的是mapred包里旧版的类和接口,新版的Mapper得自己写。
Reducer同理。
Run As -> Open Run Dialog... 选择WordCount程序,在Arguments中配置运行参数:/mapreduce/wordcount/input /mapreduce/wordcount/output/1
分别表示HDFS下的输入目录和输出目录,其中输入目录中有几个文本文件,输出目录必须不存在。
Run As -> Run on Hadoop 选择之前配置好的MapReduce运行环境,点击“Finish”运行。
控制台会输出相关的运行信息。
在Eclipse中运行、配置Hadoop,布布扣,bubuko.com
原文:http://blog.csdn.net/u011340807/article/details/25971495