首页 > 其他 > 详细

6265689

时间:2014-05-19 16:43:36      阅读:304      评论:0      收藏:0      [点我收藏+]

证明:由于${A^2} = A$,且$r\left( A \right) = r$,则存在可逆阵$P$,使得

Pbubuko.com,布布扣?1bubuko.com,布布扣AP=(Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣

即${P^{ - 1}}AP = \left( {

Ebubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
} \right)$,令$B = P\left( {
0bubuko.com,布布扣rbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Jbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
} \right){P^{ - 1}}$,则命题得证

其中$J$为$s$阶若当块,对角线全为$0$

$\bf注:$若$A$的零化多项式无重根,则$A$可相似对角化

 

 

6265689,布布扣,bubuko.com

6265689

原文:http://www.cnblogs.com/ly758241/p/3735007.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!