首页 > 编程语言 > 详细

python——基础二

时间:2016-11-29 21:45:40      阅读:244      评论:0      收藏:0      [点我收藏+]

函数的理解                                                                                                                        

面向过程:根据业务逻辑从上到下写垒代码
函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
函数作用是你的程序有良好的扩展性、复用性。
同样的功能要是用3次以上的话就建议使用函数。
 
标注:不能死记,
函数可以理解为一个一个的功能块,你把一个大的功能拆分成一块一块的,用某项功能的时候就去调用某个功能块即可!
函数可以理解为:乐高积木,给你一块一块的,你可以用这些积木块组成你想要的任何,功能!
函数可以调用函数!主函数的作用就是把函数进行串联、调用!函数本身是不能自己执行的如果你不调用就永不执行!
 
技术分享
#python name is test.py
#-------------------------------
def func1():
    pass
def func2():
    pass
def func3():
    pass
def func4():
    func1()
    func2()
    func3()

if __name__ == ‘__main__‘
    #调用上面的函数,判断了、循环了调用等!
    #函数里也可以调用函数例子:def func4():

#__name__  这个是用来判断,如果你是把这个程序当模块导入的话他的__name__就等于这个程序的文件名,如果是手动执行这个脚本比如:python test.py  那么__name__ 就等于__main__所以,我们可以用他来做判断,如果你是手动执行我就运行我调函数执行if下面的语句,如果你是调用模块我下面的if判断后面的语句就不执行!仅当模块使用!
#如果函数当模块导入的时候,他导入的是函数的名称,内容没有被导入,当你去调用的时候他才去导入函数里的信息。
技术分享

 

自定义函数

一、背景

在学习函数之前,一直遵循:面向过程编程,即:根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复制到现需功能处,如下

技术分享
while True:
    if cpu利用率 > 90%:
        #发送邮件提醒
        连接邮箱服务器
        发送邮件
        关闭连接
  
    if 硬盘使用空间 > 90%:
        #发送邮件提醒
        连接邮箱服务器
        发送邮件
        关闭连接
  
    if 内存占用 > 80%:
        #发送邮件提醒
        连接邮箱服务器
        发送邮件
        关闭连接
技术分享

上面的代码是就面向过程的编程,但是如果报警多了的话成百的代码需要添加如何操作呢?复制粘贴那会死人的!在看下下面的代码:

技术分享
def 发送邮件(内容)
    #发送邮件提醒
    连接邮箱服务器
    发送邮件
    关闭连接
  
while True:
  
    if cpu利用率 > 90%:
        发送邮件(‘CPU报警‘)
  
    if 硬盘使用空间 > 90%:
        发送邮件(‘硬盘报警‘)
  
    if 内存占用 > 80%:
技术分享

第二次必然比第一次的重用性和可读性要好,其实这就是函数式编程和面向过程编程的区别:

  • 面向过程:根据需求一行一行垒代码!逻辑乱、并切代码重复、不易修改重用性差!
  • 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可
  • 面向对象:对函数进行分类和封装,让开发“更快更好更强...”

二、函数式编程

函数式编程最重要的是增强代码的重用性和可读性

def 函数名(参数):
     
    ...
    函数体
    ...

函数的定义主要有如下要点:

  • def:表示函数的关键字
  • 函数名:函数的名称,日后根据函数名调用函数
  • 函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
  • 参数:为函数体提供数据
  • 返回值:当函数执行完毕后,可以给调用者返回数据。

1、返回值

函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。

技术分享
def 发送短信():
     
    发送短信的代码...
 
    if 发送成功:
        return True
    else:
        return False
 
 
while True:
     
    # 每次执行发送短信函数,都会将返回值自动赋值给result
    # 之后,可以根据result来写日志,或重发等操作
 
    result = 发送短信()
    if result == False:
        记录日志,短信发送失败...
技术分享

2、参数

为什么要有参数?看下下面的例子:

如果不定义参数,用函数的话:(每个有相同功能的都写个函数,说好的代码简化呢?)

技术分享
def CPU报警邮件()
    #发送邮件提醒
    连接邮箱服务器
    发送邮件
    关闭连接

def 硬盘报警邮件()
    #发送邮件提醒
    连接邮箱服务器
    发送邮件
    关闭连接

def 内存报警邮件()
    #发送邮件提醒
    连接邮箱服务器
    发送邮件
    关闭连接
 
while True:
 
    if cpu利用率 > 90%:
        CPU报警邮件()
 
    if 硬盘使用空间 > 90%:
        硬盘报警邮件()
 
    if 内存占用 > 80%:
        内存报警邮件()
技术分享

使用函数:(代码明显少了很多,把重复的内用改为参数调用!)

技术分享
def 发送邮件(邮件内容)

    #发送邮件提醒
    连接邮箱服务器
    发送邮件
    关闭连接

 
while True:
 
    if cpu利用率 > 90%:
        发送邮件("CPU报警了。")
 
    if 硬盘使用空间 > 90%:
        发送邮件("硬盘报警了。")
 
    if 内存占用 > 80%:
        发送邮件("内存报警了。")
技术分享

函数的有三中不同的参数:

  1. 普通参数
  2. 默认参数
  3. 动态参数

普通参数:

技术分享
# ######### 定义函数 ######### 

# name 叫做函数func的形式参数,简称:形参
def func(name):
    print name

# ######### 执行函数 ######### 
#  ‘luotianshuai‘ 叫做函数func的实际参数,简称:实参
func(‘luotianshuai‘)
技术分享

但是普通参数有个问题!你在定义参数的时候定义了几个参数,你在调用的时候必须给他几个参数否则就报错!

def func(name,shuai):
    print name,shuai
#func(‘luotianshuai‘)
func(‘luotianshuai‘)

#报错内容:TypeError: func() takes exactly 2 arguments (1 given)

默认参数:

在你没有给他指定参数的时候他就会使用默认的参数!

技术分享
def func(name, age = 18):
    
    print "%s:%s" %(name,age)

# 指定参数
func(‘luotianshuai‘, 19)
# 使用默认参数
func(‘luotianshuai‘)

技术分享
注:默认参数需要放在参数列表最后,要不就会报错!原因是:他的参数赋值是一个一个的赋值。如果提供了默认值的形参,你默认一定要往后排序为了就是你给那些没有陪默认值的参数 !

动态参数:

动态参数顾名思义就是可以动态的去扩展函数参数的数量!

例子:1 (多个单个变量,整合成元组)

 

技术分享
def func(*args):
    print args

# 执行方式一
func(11,33,4,4454,5)
#输出结果:11,33,4,4454,5

# 执行方式二 
li = [11,2,2,3,3,4,54]
func(li)
#输出结果:([11,2,2,3,3,4,54]) 
#如果想输入的列表,不想让列表称谓元组里的仅一个元素而是让列表的元素成为元组的元素加*即可
func(*li)
#输出结果:(11,2,2,3,3,4,54)
#############################################################
1、接受多个参数
2、内部自动构造元组
3、序列,*,避免内部构造元组
技术分享

 

例子:2(整合为字典变量)

技术分享
def func(**kwargs):

    print args


# 执行方式一
func(name=‘luotianshuai‘,age=18)

# 执行方式二
li = {‘name‘:‘luotianshuai‘, age:18, ‘gender‘:‘male‘}
func(**li)
技术分享

例子:3(整合了*args,**args)

技术分享
def func(*args, **drgs):

    print args
    print dargs
#例子:
func(11,22,33,44,k1=‘luotianshuai‘,k2=‘shuaige‘)
(11, 22, 33, 44)
{‘k2‘: ‘shuaige‘, ‘k1‘: ‘luotianshuai‘}
技术分享

扩展:发邮件实例

技术分享
import smtplib
from email.mime.text import MIMEText
from email.utils import formataddr

def email(message):
    msg = MIMEText("邮件报警测试", ‘plain‘, ‘utf-8‘)
    msg[‘From‘] = formataddr(["shuaige",‘shuaige@test.com‘]) #发件人和发件邮箱
    msg[‘To‘] = formataddr(["帅哥",‘451161316@qq.com‘])
    msg[‘Subject‘] = message  #这里我调用了参数

    server = smtplib.SMTP("smtp.test.com", 25)
    server.login("shuaige@126.com", "pwdnq.buzhidao")
    server.sendmail(‘shuaige@126.com‘, [‘451161316@qq.com‘,], msg.as_string())
    server.quit()


if __name__ == u‘__main__‘:
    cpu = 100
    disk = 500
    ram = 50
    for i in range(1):
        if cpu > 90:
            alert = u‘CPU出问题了‘   #这里设置了一个变量
            email(alert)  #这里调用函数的时候引用了上面的变量,当执行函数的时候形参讲会被替换掉,message=‘CPU出问题了‘  发送邮件!
        if disk > 90:
            alert = u‘硬盘出问题了‘
            email(alert)
        if ram> 80:
            alert = u‘内存出问题了‘
            email(alert)
技术分享

内置函数                                                                                                                      

 技术分享

内置函数:(就是python把各个模块中常用的一些方法给拿出来方便使用)

常用的记住之后,要知道怎么去查:

>>> li = [11,22,33,44]
>>> type(li)  #查看数据类型
<type ‘list‘>  
>>> dir(list)  #查看类型包含的那些方法
>>>help(list)  #查看类型中包含的方法的详细说明

函数的作用域                                                                                                         

看下面的例子:

技术分享
def say():
    name = "tianshuai"
    print name
say()
 这个输出:
tianshuai  # 是没有问题的,那么看下下面的例子:

def say():
    name = "tianshuai"
    print name
say()
print name 
# 这个能不能调用呢,不能,会报错!函数的作用域就是在函数里定义的变量不能被外面使用!
技术分享

在看下面的例子:

技术分享
name2 = "shuaige"
def say():
    name = "tianshuai"
    print name
    print name2
say()
输出结果:
tianshuai
shuaige
技术分享
总结:函数的作用域就是在函数里定义的变量不能被外面使用!但是外部全局定义的全局变量在函数内是可以使用的。
举个例子来说:你在房子里可以看到屋内的东西和房子外的东西,但是你在房子外面就只能看到房子外的东西不能看到房子内的东西!
原因防止在函数调用的时候防止变量冲突!

问题:我在外面定义的全局变量在函数内可以改他吗?  #看下面的例子:

技术分享
name2 = "shuaige"
def say():
    name = "tianshuai"
    name2 = "shuaige is shuaige"
    print name,name2
say()
print name2

#输出结果:
tianshuai shuaige is shuaige   #在函数内改变了
shuaige  #但是外面调用还是没有改变!
技术分享

但我就是想在函数里改变全局变量是否可以呢?可以!

技术分享
#但是我就想在函数内改掉这个变量怎么办呢?在函数内调用global参数!(提供这个功能,但是不建议用!你在局部变量改全局变量很容易引起混乱)
name2 = "shuaige"
def say():
    global name2
    name = "tianshuai"
    name2 = "shuaige is shuaige"
    print name,name2
say()
print name2

输出结果:
tianshuai shuaige is shuaige
shuaige is shuaige
技术分享

return参数                                                                                                                     

技术分享
def count():
    for i in range(1,10):
        if i = 5:
            return
        else:
            print i
    print "Hello World"   #所以当i=5的时候就直接跳出了函数了,这里是不会被打印出来了!不是循环!!!
count()

输出结果:
1
2
3
4
技术分享

return 一般写在函数的末尾,一般你想看函数的执行结果!然后判断后面的程序。看下面的例子

技术分享
def count():
    name = "tianshuai"
    for i in range(1,10):
        if i == 5:
            print "hello"
        else:
            print i
    return name    #在这里加了一个return 
user = count()
if user == "tianshuai":   #然后判断,看下执行结果!
    print "oh shuaige is coming"  

执行结果:
1
2
3
4
hello
6
7
8
9
oh shuaige is coming   #这里看下! 上面的判断执行了!所以return这个把name的值输出了!
技术分享

 

文件操作                                                                                                                 

操作文件时,一般需要经历如下步骤:

  • 打开文件
  • 操作文件

一、打开文件

 

文件句柄 = file(‘文件路径‘, ‘模式‘)
#python中打开文件有两种方式,即:open(...) 和  file(...) ,本质上前者在内部会调用后者来进行文件操作,推荐使用 open。3.0以后file方法讲被用做其他,open方法会自动的去帮你找他调用得方法在那里!

 

打开文件时,需要指定文件路径和以何种方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。

打开文件的模式有:

  • r,只读模式(默认)。
  • w,只写模式。【不可读;不存在则创建;存在则删除内容;】
  • a,追加模式。【可读;   不存在则创建;存在则只追加内容;】

"+" 表示可以同时读写某个文件

  • r+,可读写文件。【可读;可写;可追加】
  • w+,无意义
  • a+,同a

"U"表示在读取时,可以将 \r \n \r\n自动转换成 \n (与 r 或 r+ 模式同使用)

  • rU
  • r+U

"b"表示处理二进制文件(如:FTP发送上传ISO镜像文件,linux可忽略,windows处理二进制文件时需标注)

  • rb
  • wb
  • ab

二、操作操作

 

技术分享
class file(object):
  
    def close(self): # real signature unknown; restored from __doc__
        关闭文件
        """
        close() -> None or (perhaps) an integer.  Close the file.
         
        Sets data attribute .closed to True.  A closed file cannot be used for
        further I/O operations.  close() may be called more than once without
        error.  Some kinds of file objects (for example, opened by popen())
        may return an exit status upon closing.
        """
 
    def fileno(self): # real signature unknown; restored from __doc__
        文件描述符  
         """
        fileno() -> integer "file descriptor".
         
        This is needed for lower-level file interfaces, such os.read().
        """
        return 0    
 
    def flush(self): # real signature unknown; restored from __doc__
        刷新文件内部缓冲区
        """ flush() -> None.  Flush the internal I/O buffer. """
        pass
 
 
    def isatty(self): # real signature unknown; restored from __doc__
        判断文件是否是同意tty设备
        """ isatty() -> true or false.  True if the file is connected to a tty device. """
        return False
 
 
    def next(self): # real signature unknown; restored from __doc__
        获取下一行数据,不存在,则报错
        """ x.next() -> the next value, or raise StopIteration """
        pass
 
    def read(self, size=None): # real signature unknown; restored from __doc__
        读取指定字节数据
        """
        read([size]) -> read at most size bytes, returned as a string.
         
        If the size argument is negative or omitted, read until EOF is reached.
        Notice that when in non-blocking mode, less data than what was requested
        may be returned, even if no size parameter was given.
        """
        pass
 
    def readinto(self): # real signature unknown; restored from __doc__
        读取到缓冲区,不要用,将被遗弃
        """ readinto() -> Undocumented.  Don‘t use this; it may go away. """
        pass
 
    def readline(self, size=None): # real signature unknown; restored from __doc__
        仅读取一行数据
        """
        readline([size]) -> next line from the file, as a string.
         
        Retain newline.  A non-negative size argument limits the maximum
        number of bytes to return (an incomplete line may be returned then).
        Return an empty string at EOF.
        """
        pass
 
    def readlines(self, size=None): # real signature unknown; restored from __doc__
        读取所有数据,并根据换行保存值列表
        """
        readlines([size]) -> list of strings, each a line from the file.
         
        Call readline() repeatedly and return a list of the lines so read.
        The optional size argument, if given, is an approximate bound on the
        total number of bytes in the lines returned.
        """
        return []
 
    def seek(self, offset, whence=None): # real signature unknown; restored from __doc__
        指定文件中指针位置
        """
        seek(offset[, whence]) -> None.  Move to new file position.
         
        Argument offset is a byte count.  Optional argument whence defaults to
        0 (offset from start of file, offset should be >= 0); other values are 1
        (move relative to current position, positive or negative), and 2 (move
        relative to end of file, usually negative, although many platforms allow
        seeking beyond the end of a file).  If the file is opened in text mode,
        only offsets returned by tell() are legal.  Use of other offsets causes
        undefined behavior.
        Note that not all file objects are seekable.
        """
        pass
 
    def tell(self): # real signature unknown; restored from __doc__
        获取当前指针位置
        """ tell() -> current file position, an integer (may be a long integer). """
        pass
 
    def truncate(self, size=None): # real signature unknown; restored from __doc__
        截断数据,仅保留指定之前数据
        """
        truncate([size]) -> None.  Truncate the file to at most size bytes.
         
        Size defaults to the current file position, as returned by tell().
        """
        pass
 
    def write(self, p_str): # real signature unknown; restored from __doc__
        写内容
        """
        write(str) -> None.  Write string str to file.
         
        Note that due to buffering, flush() or close() may be needed before
        the file on disk reflects the data written.
        """
        pass
 
    def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__
        将一个字符串列表写入文件
        """
        writelines(sequence_of_strings) -> None.  Write the strings to the file.
         
        Note that newlines are not added.  The sequence can be any iterable object
        producing strings. This is equivalent to calling write() for each string.
        """
        pass
 
    def xreadlines(self): # real signature unknown; restored from __doc__
        可用于逐行读取文件,非全部
        """
        xreadlines() -> returns self.
         
        For backward compatibility. File objects now include the performance
        optimizations previously implemented in the xreadlines module.
        """
        pass
技术分享

 

三、with方法

 

为了避免打开文件后忘记关闭,可以通过管理上下文,即:(建议使用此方法打开文件)

with open(‘log‘,‘r‘) as f:
     
    ...

如此方式,当with代码块执行完毕时,内部会自动关闭并释放文件资源。

在Python 2.7 后,with又支持同时对多个文件的上下文进行管理,即:

with open(‘log1‘) as obj1, open(‘log2‘) as obj2:
    pass

例子:比如要修改nginx.conf 文件然后还的回滚怎么做?

技术分享
with open(‘nginx.conf‘,‘r‘) as obj1,open(‘nginx.conf.new‘,‘w‘) as obj2:
    for i in obj1.readlines():
        i = i.strip()
        print i
        obj2.write(i)
        obj2.write(‘\n‘)

#读取nginx.conf每行然后存储到新的文件nginx.conf.new里!
技术分享

lambda表达式                                                                                                   

学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:

技术分享
# 普通条件语句
if 1 == 1:
    name = ‘zhenghao‘
else:
    name = ‘nvshen‘
  
# 三元运算
name = ‘zhenghao‘ if 1 == 1 else ‘nvshen‘

#这个就是if else的一个简写。
#if 条件成立的时候name为‘zhenghao‘ 不成立的时候为:‘nvshen‘ ,语法糖!
技术分享

那么函数有没有他的简写呢?也是有的lambda表达式

lambda 和if  else的三元运算一样,是为了简化函数,但是:

1、只能做简单的操作
2、自动return

看下面两个函数的对比

技术分享
‘‘‘正常函数‘‘‘
def func(arg):
    return arg + 1
result = func(100)
print result

‘‘‘lambda表达式‘‘‘
func2 =  lambda a: a + 1
result = func2(10000)
#这里调用函数的时候就是lambda表达式左边的等号就是他函数的调用!
print result

#执行结果:
#101
#10001
技术分享

内置函数 二                                                                                                                  

一、map

遍历序列,对序列中每个元素进行操作,最终获取新的序列。

技术分享

解释:

在Python中,最基本的数据结构是序列(sequence)。序列中的每个元素被分配一个序号——即元素的位置,也称为索引。第一个索引是 0,第二个则是 1,以此类推。序列中的最后一个元素标记为 -1,倒数第二个元素为 -2,一次类推。        

Python包含 6 中内建的序列,包括列表、元组、字符串、Unicode字符串、buffer对象和xrange对象。

技术分享 map例子

 

使用lambda表达式:

技术分享 lambda表达式

 

二、filter

对于序列中的元素进行筛选,最终获取符合条件的序列!

技术分享

li = [11,22,33,44,55,66,77,88]

print filter(lambda a:a>33,li)
输出结果:[44, 55, 66, 77, 88]

三、reduce

对于序列内所有元素进行累计操作

技术分享

技术分享
li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li) #累乘、除、加、减
print result

# reduce的第一个参数,函数必须要有两个参数,因为他是两两进行操作
# reduce的第二个参数,要循环的序列
# reduce的第三个参数,初始值

#初始值
li = [1,2,3,4,5,6,7,8]
result =  reduce(lambda a1,a2:a1+a2,li,100000) #累乘、除、加、减
print result
技术分享

默认参数:

技术分享

迭代器和生成器                                                                            

1、迭代器

迭代器是访问集合元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退。另外,迭代器的一大优点是不要求事先准备好整个迭代过程中所有的元素。迭代器仅仅在迭代到某个元素时才计算该元素,而在这之前或之后,元素可以不存在或者被销毁。这个特点使得它特别适合用于遍历一些巨大的或是无限的集合,比如几个G的文件

特点:

  1. 访问者不需要关心迭代器内部的结构,仅需通过next()方法不断去取下一个内容
  2. 不能随机访问集合中的某个值 ,只能从头到尾依次访问
  3. 访问到一半时不能往回退
  4. 便于循环比较大的数据集合,节省内存
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> a = iter([1,2,3,4,5])
>>> a
<list_iterator object at 0x101402630>
>>> a.__next__()
1
>>> a.__next__()
2
>>> a.__next__()
3
>>> a.__next__()
4
>>> a.__next__()
5
>>> a.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1in <module>
StopIteration

2、生成器

一个函数调用时返回一个迭代器,那这个函数就叫做生成器(generator);如果函数中包含yield语法,那这个函数就会变成生成器;

1
2
3
4
5
def func():
    yield 1
    yield 2
    yield 3
    yield 4

上述代码中:func是函数称为生成器,当执行此函数func()时会得到一个迭代器。

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> temp = func()
>>> temp.__next__()
1
>>> temp.__next__()
2
>>> temp.__next__()
3
>>> temp.__next__()
4
>>> temp.__next__()
Traceback (most recent call last):
  File "<stdin>", line 1in <module>
StopIteration

3、实例

a、利用生成器自定义range

1
2
3
4
5
6
7
8
def nrange(num):
    temp = -1
    while True:
        temp = temp + 1
        if temp >= num:
            return
        else:
            yield temp

b、利用迭代器访问range

1
...

yield生成器                                                                                                                

yield和return的区别:

    yield跳出函数后会记录当前函数的状态当下次调用的时候,从记录的状态开始!

    return后将直接跳出函数!

1、对比range 和 xrange 的区别

>>> print range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> print xrange(10)
xrange(10)

如上代码所示,range会在内存中创建所有指定的数字,而xrange不会立即创建,只有在迭代循环时,才去创建每个数组。

看下下面的例子:(自定义生成器)

技术分享
def mrange(arg):
    seed = 0
    while True:
        seed = seed +1
        if seed > arg:
            return
        else:
            yield seed
for i in mrange(10):
    print i
技术分享

 冒泡算法                                                                                                                          

 

需求:请按照从小到大对列表 [13, 22, 6, 99, 11] 进行排序

 

思路:相邻两个值进行比较,将较大的值放在右侧,依次比较!

冒泡算法原理图:

技术分享

冒泡算法实例:
列表中有5个元素两辆进行比较,然后用中间值进行循环替换!
既然这样,既然这样我们还可以用一个循环把上面的循环进行在次循环,用表达式构造出内部循环!

技术分享
li = [13,22,6,99,11]
for n in range(1,len(li)):
    for m in range(len(li)-n):
        num1 = li[m]
        num2 = li[m+1]
    if num1 > num2:
        temp = li[m]
        li[m] = num2
        li[m+1] = temp
print li
技术分享

让的原理和下面一样:

技术分享 冒泡算法原理

 装饰器                                                                                                                          

1、必备

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#### 第一波 ####
def foo():
    print ‘foo‘
 
foo     #表示是函数
foo()   #表示执行foo函数
 
#### 第二波 ####
def foo():
    print ‘foo‘
 
foo = lambda x: x + 1
 
foo()   # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了

2、需求来了

初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
############### 基础平台提供的功能如下 ###############
 
def f1():
    print ‘f1‘
 
def f2():
    print ‘f2‘
 
def f3():
    print ‘f3‘
 
def f4():
    print ‘f4‘
 
############### 业务部门A 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()
 
############### 业务部门B 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()

目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。

老大把工作交给 Low B,他是这么做的:

1
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。

当天Low B 被开除了...

老大把工作交给 Low BB,他是这么做的:

1
只对基础平台的代码进行重构,让N业务部门无需做任何修改
技术分享 View Code

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

1
只对基础平台的代码进行重构,其他业务部门无需做任何修改
技术分享 View Code

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块
  • 开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print ‘f1‘
@w1
def f2():
    print ‘f2‘
@w1
def f3():
    print ‘f3‘
@w1
def f4():
    print ‘f4‘

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print ‘f1‘

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

  1. def w1(func):  ==>将w1函数加载到内存
  2. @w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

  • 执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
    所以,内部就会去执行:
        def inner:
            #验证
            return f1()   # func是参数,此时 func 等于 f1
        return inner     # 返回的 inner,inner代表的是函数,非执行函数
    其实就是将原来的 f1 函数塞进另外一个函数中
  • 将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
    w1函数的返回值是:
       def inner:
            #验证
            return 原来f1()  # 此处的 f1 表示原来的f1函数
    然后,将此返回值再重新赋值给 f1,即:
    新f1 = def inner:
                #验证
                return 原来f1() 
    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

技术分享 一个参数
技术分享 两个参数
技术分享 三个参数

问题:可以装饰具有处理n个参数的函数的装饰器?

1
2
3
4
5
6
7
8
9
10
11
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
@w1
def f1(arg1,arg2,arg3):
    print ‘f1‘

问题:一个函数可以被多个装饰器装饰吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
def w2(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
 
@w1
@w2
def f1(arg1,arg2,arg3):
    print ‘f1‘

问题:还有什么更吊的装饰器吗?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#!/usr/bin/env python
#coding:utf-8
  
def Before(request,kargs):
    print ‘before‘
      
def After(request,kargs):
    print ‘after‘
  
  
def Filter(before_func,after_func):
    def outer(main_func):
        def wrapper(request,kargs):
              
            before_result = before_func(request,kargs)
            if(before_result != None):
                return before_result;
              
            main_result = main_func(request,kargs)
            if(main_result != None):
                return main_result;
              
            after_result = after_func(request,kargs)
            if(after_result != None):
                return after_result;
              
        return wrapper
    return outer
      
@Filter(Before, After)
def Index(request,kargs):
    print ‘index‘

4、functools.wraps

上述的装饰器虽然已经完成了其应有的功能,即:装饰器内的函数代指了原函数,注意其只是代指而非相等,原函数的元信息没有被赋值到装饰器函数内部。例如:函数的注释信息

技术分享 无元信息

如果使用@functools.wraps装饰装饰器内的函数,那么就会代指元信息和函数。

技术分享 含元信息
 

python——基础二

原文:http://www.cnblogs.com/zhenghaonihao/p/6115116.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!