1 (1)Let {xk}nk=1?(0,π)
, and define
Show that
Proof. Direct computations show
(lnsinxx)′′=(lnsinx?lnx)′′=?1sin2x+1x2<0,
for all x∈(0,π)
. Thus lnsinxx
is a concave function in (0,π)
. Jensen‘s inequality then yields
1n∑k=1nlnsinxkxk≤lnsinxx.
The exponential of this above inequality is the desired result.
(2)From
calculate the integral ∫∞0sin(x2)dx
.
Proof. Consider the sector in R2
enclosed by the following three curves
?????????I:II:III:0≤z≤R,Reiθ, 0≤θ≤π4,reiπ4, 0≤r≤R.
Cauchy‘s integration theorem then yields
0=[∫I+∫II+∫III]eiz2dz.(1)
Noticing
(a)∫Ieiz2dz=∫R0eix2dx
,
(b)
∣∣∣∫IIeiz2dz∣∣∣=≤≤=→∣∣∣∫π40eiR2e2iθ?iReiθdθ∣∣∣R∫π40e?R2sin2θdθR∫π40e?R2?2π?2θdθπ4R(1?e?R2)0, as R→∞,
(c)∫IIIeiz2dz=?∫R0eir2eiπ2?eiπ4dr=eiπ4∫R0e?r2dr
,
we have, by sending R→∞
in (1)
, that
Taking the imaginary part of this above equality gives
2 Let f:R→R
be any function. Prove that the set
C={x0∈R; f(x0)=limx→x0f(x)}
is a Gδ
-set.
Proof. By definition,
where
Ck={x0∈R; ? δx0>0, s.t. |x?x0|<δx0?|f(x)?f(x0)|<1k}
is an open set. In fact,
3 Consider the ODE
where
?????|f(t,x)|≤φ(t)|x|, (t,x)∈R×R,∫∞φ(t)dt<∞.
Prove that every solution approaches zero as t→∞
.
Proof. For all t∈[0,∞)
, we have
∞>≥∫t0φ(s)ds≥∫t0∣∣∣x˙(s)+x(s)x(s)∣∣∣ds=∫t0∣∣∣(esx(s))′esx(s)∣∣∣ds∣∣∣∫t0d(esx(s))∣∣∣=∣∣etx(t)?x(0)∣∣.
Thus
limt→∞x(t)=limt→∞e?t?[etx(t)]=0.
4 Solve the PDE
{△u=0,u=g,in R+×R,on {x1=0}×R,
where
g(x2)={1,?1,if x2>0,if x2<0.
Proof. It is standard (easy to verfiy) that
u(x)=∫{y1=0}×Ru(y)?G?n(x,y)dS(y),
where
G(x,y)=12π[ln|y?x|?ln|y?x~|]
is the Green‘s function for {x1>0}
, with x~
the reflection of x
in the plane {x1=0}
. Direct computations show
?G?n(x,y)===??G?y1(x,y)=?12π[y1?x1|y?x|2?y1+x1|y?x~|]?12π?2x1|y?x1|2 (|y?x|=|y?x~|)x1π|y?x|2.
Thus
u(x)=====∫{y1=0}×Ru(y)x1π|y?x|2dS(y)?x1π∫∞?∞g(y2)x21+(y2?x2)2dy2?x1π????1x1∫0?∞?11+∣∣y2?x2x1∣∣2dy2?x2x1+1x1∫∞011+(y2?x2x1)2dy2?x2x1?????1π[?arctany2?x2x1∣∣∣y2=0y2=?∞+arctany2?x2x1∣∣∣y2=∞y2=0]2πarctanx2x1, x=(x1,x2)∈R2.
5 Let K∈C([0,1]×[0,1])
. For f∈C[0,1]
, the space of continuous functions on [0,1]
, define
Prove that Tf∈C[0,1]
. Moreover,
is precompact in C[0,1]
.
Proof.
(1)Tf∈C[0,1]
.
|Tf(x1)?Tf(x2)|≤∫10|K(x1,y)?K(x2,y)||f(y)|dy→0, as |x1?x2|→0,(2)
by the uniform continuity of K
in x
and y
.
(2)Ω
is precompact in C[0,1]
. This follows readily from
(a)the unform boundedness of f∈Ω
:
(b)the equicontinuity of f∈Ω
, that is, (2)
,
(c)and the Ascoli-Azer\‘a theorem.
6 Prove the Poisson
summation formula
∑n=?∞∞f(x+2nπ)=12π∑k=?∞∞f^(k)eikx,
for
f∈S(R)={f∈L1loc(R); (1+|x|m)∣∣f(n)(x)∣∣≤Cm,n, ? m,n≥0}.
Here
Proof. Define
Then h
is periodic with periodical 2π
. And hence the coefficients of its Fourier series are
ak===12π∫2π0h(x)e?ikxdx=12π∑n=?∞∞∫2π0f(x+2nπ)e?ikxdx12π∑n=?∞∞∫2(n+1)π2nπf(y)e?ik(y?2nπ)dy∫∞?∞f(x)e?ikxdx=f^(k).
Consequently,
∑n=?∞∞f(x+2nπ)=h(x)=∑k=?∞∞akeikx=∑k=?∞∞f^(k)eikx.
丘成桐大学生数学竞赛2010年分析与方程个人赛试题参考解答,布布扣,bubuko.com
丘成桐大学生数学竞赛2010年分析与方程个人赛试题参考解答
原文:http://www.cnblogs.com/zhangzujin/p/3735236.html