首页 > 其他 > 详细

[家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

时间:2014-05-19 14:26:48      阅读:655      评论:0      收藏:0      [点我收藏+]

 

 

Navier-Stokes equations

 

1 Let ωbubuko.com,布布扣 be a domain in Rbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣 , complement of a compact set Bbubuko.com,布布扣 . Consider the following boundary value problem in ωbubuko.com,布布扣 :

νv=(v?ξ?ω×x)??v+?p+fbubuko.com,布布扣div v=0bubuko.com,布布扣bubuko.com,布布扣}in ω,bubuko.com,布布扣v|bubuko.com,布布扣?ωbubuko.com,布布扣=0, limbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣v(x)=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(1)bubuko.com,布布扣bubuko.com,布布扣
We say that v:ωRbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣 is a weak solution of (1)bubuko.com,布布扣 iff the following conditions are satisfied:

(1)vDbubuko.com,布布扣1,2bubuko.com,布布扣0bubuko.com,布布扣(ω)bubuko.com,布布扣 ;

(2)vbubuko.com,布布扣 obeys the following equation:

ν(?v,?φ)+((v?ξ?ω×x)??v,φ)+(f,φ)=0, ? φD(ω),bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
where, we recall,
D(ω)={φCbubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣(ω); div φ=0},bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Dbubuko.com,布布扣1,2bubuko.com,布布扣0bubuko.com,布布扣(ω)= completion of D(ω) in the norm ?φbubuko.com,布布扣2bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
and (g,h)=bubuko.com,布布扣ωbubuko.com,布布扣g?hdxbubuko.com,布布扣 . Show that for any ξ, ωRbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣 and for every fbubuko.com,布布扣 such that the map
Dbubuko.com,布布扣1,2bubuko.com,布布扣0bubuko.com,布布扣(ω)?φ?(f,φ)Rbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
is a bounded (linear) functional, problem (1)bubuko.com,布布扣 has, at least, one weak solution.

 

2 Let

C(ω)={u:ωRbubuko.com,布布扣3bubuko.com,布布扣; u is a weak solution to (1) with ξ=ω=0 andbubuko.com,布布扣with given f, |u(x)|M/|x|, for some M>0bubuko.com,布布扣bubuko.com,布布扣}bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Show that there exists γ>0bubuko.com,布布扣 such that if vC(ω)bubuko.com,布布扣 and
supbubuko.com,布布扣xωbubuko.com,布布扣[(|x|+1)|v(x)|]<γ,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
then vbubuko.com,布布扣 is the unique weak solution in the class Cbubuko.com,布布扣 .

Hint. Prove and use the inequality

bubuko.com,布布扣ωbubuko.com,布布扣|u(x)|bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣(|x|+1)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dx4bubuko.com,布布扣ωbubuko.com,布布扣|ν(x)|bubuko.com,布布扣2bubuko.com,布布扣dx, uDbubuko.com,布布扣1,2bubuko.com,布布扣0bubuko.com,布布扣(ω).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

 

Nonlinear Elliptic PDEs

 

1 Let ωbubuko.com,布布扣 be a bounded open set in Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 . Let Vbubuko.com,布布扣 be the space of distributions on ωbubuko.com,布布扣 , X=Lbubuko.com,布布扣2bubuko.com,布布扣(ω)bubuko.com,布布扣 , Y=Hbubuko.com,布布扣1bubuko.com,布布扣(ω)bubuko.com,布布扣 . Assume that ububuko.com,布布扣 is a solution of the equation

u=Tu+Fbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
in Xbubuko.com,布布扣 for some FXYbubuko.com,布布扣 . Suppose that

(1)T:XXbubuko.com,布布扣 is contracting:

Tu?Tvbubuko.com,布布扣Xbubuko.com,布布扣<θv?wbubuko.com,布布扣Xbubuko.com,布布扣, for some 0<θ<1, ? v,wX;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2)T:YYbubuko.com,布布扣 is shrinking:

Tvbubuko.com,布布扣Ybubuko.com,布布扣<θvbubuko.com,布布扣Ybubuko.com,布布扣, for some 0<θ<1, ? vY;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(3)T?+F:XYXYbubuko.com,布布扣 . Prove that uYbubuko.com,布布扣 .

Note. You can not directly use the regularity lifting theorem II. However, you can use the idea of proof there.

 

 

2 Let αbubuko.com,布布扣 be a real number satisfying 0<α<nbubuko.com,布布扣 and τ=n+αbubuko.com,布布扣n?αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 . Assume that ububuko.com,布布扣 is a positive solution of the integral equation

u(x)=bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣|x?y|bubuko.com,布布扣n?αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ububuko.com,布布扣τbubuko.com,布布扣(y)bubuko.com,布布扣|y|bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dybubuko.com,布布扣bubuko.com,布布扣(2)bubuko.com,布布扣bubuko.com,布布扣
with s0bubuko.com,布布扣 . Also assume that ububuko.com,布布扣 is continous and
bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[ububuko.com,布布扣τ?1bubuko.com,布布扣(y)bubuko.com,布布扣|y|bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣]bubuko.com,布布扣n/αbubuko.com,布布扣dy<, uLbubuko.com,布布扣qbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣) for some q>nbubuko.com,布布扣n?αbubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Define
Σbubuko.com,布布扣λbubuko.com,布布扣={x=(xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣); xbubuko.com,布布扣1bubuko.com,布布扣<λ}.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Let xbubuko.com,布布扣λbubuko.com,布布扣=(2λ?xbubuko.com,布布扣1bubuko.com,布布扣,xbubuko.com,布布扣2bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 be the reflection of xbubuko.com,布布扣 in the plane
Tbubuko.com,布布扣λbubuko.com,布布扣={x; xbubuko.com,布布扣1bubuko.com,布布扣=λ}.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Prove that for λbubuko.com,布布扣 sufficiently negative, we have
u(xbubuko.com,布布扣λbubuko.com,布布扣)u(x), ? xΣbubuko.com,布布扣λbubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣(3)bubuko.com,布布扣bubuko.com,布布扣

 

Hint. You may use the fact that

u(x)?u(xbubuko.com,布布扣λbubuko.com,布布扣)=bubuko.com,布布扣Σbubuko.com,布布扣λbubuko.com,布布扣bubuko.com,布布扣[1bubuko.com,布布扣|x?y|bubuko.com,布布扣n?αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣λbubuko.com,布布扣?ybubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n?αbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣][ububuko.com,布布扣τbubuko.com,布布扣(y)bubuko.com,布布扣|y|bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?ububuko.com,布布扣τbubuko.com,布布扣(ybubuko.com,布布扣τbubuko.com,布布扣)bubuko.com,布布扣|ybubuko.com,布布扣τbubuko.com,布布扣|bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣]dy.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

Note. If you have difficulty in proving (3)bubuko.com,布布扣 for s0bubuko.com,布布扣 , then you can prove it in the special case when s=0bubuko.com,布布扣 , and you can still get 80%bubuko.com,布布扣 of the credit.

 

Mean Curvature Flow

 

1假设 X(?,t):Mbubuko.com,布布扣nbubuko.com,布布扣×[0,T)Rbubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣 是平均曲率流方程的解, 其中 Mbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 是紧流形且初始超曲面 Xbubuko.com,布布扣0bubuko.com,布布扣=X(?,0)bubuko.com,布布扣 具有非负的平均曲率. 试证: 对于每个 t(0,T)bubuko.com,布布扣 , X(?,t)bubuko.com,布布扣 或者是极小曲面 (即平均曲率为零), 或者具有正平均曲率.

 

2如果一族超曲面 X(?,t):Mbubuko.com,布布扣nbubuko.com,布布扣×[0,T)Rbubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣 满足

?bubuko.com,布布扣?tbubuko.com,布布扣bubuko.com,布布扣X(x,t)=H(x,t)n(x,t)+X(x,t), xMbubuko.com,布布扣nbubuko.com,布布扣, t>0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
试证:

(1)?bubuko.com,布布扣?tbubuko.com,布布扣bubuko.com,布布扣gbubuko.com,布布扣ijbubuko.com,布布扣(x,t)=2gbubuko.com,布布扣ijbubuko.com,布布扣(x,t)?2Hhbubuko.com,布布扣ijbubuko.com,布布扣(x,t)bubuko.com,布布扣 ;

(2)?bubuko.com,布布扣?tbubuko.com,布布扣bubuko.com,布布扣dμbubuko.com,布布扣tbubuko.com,布布扣=(n?Hbubuko.com,布布扣2bubuko.com,布布扣)dμbubuko.com,布布扣tbubuko.com,布布扣bubuko.com,布布扣 , 其中 dμbubuko.com,布布扣tbubuko.com,布布扣=det(gbubuko.com,布布扣ijbubuko.com,布布扣(x,t))bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣dxbubuko.com,布布扣1bubuko.com,布布扣?dxbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 是超曲面 X(?,t)bubuko.com,布布扣 的体积元.

 

Nonlinear Conservation Laws

 

1证明:

u(x,t)=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?2bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣(t+3x+tbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣),bubuko.com,布布扣0,bubuko.com,布布扣bubuko.com,布布扣if 4x+tbubuko.com,布布扣2bubuko.com,布布扣>0,bubuko.com,布布扣if 4x+tbubuko.com,布布扣2bubuko.com,布布扣<0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
是方程 ububuko.com,布布扣tbubuko.com,布布扣+uububuko.com,布布扣xbubuko.com,布布扣=0bubuko.com,布布扣 的熵解 (entropy solution).

 

2考虑如下方程的 Riemannbubuko.com,布布扣 问题

?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣tbubuko.com,布布扣+(?u)bubuko.com,布布扣xbubuko.com,布布扣=0,bubuko.com,布布扣(?u)bubuko.com,布布扣tbubuko.com,布布扣+(?ububuko.com,布布扣2bubuko.com,布布扣+?bubuko.com,布布扣γbubuko.com,布布扣)bubuko.com,布布扣xbubuko.com,布布扣=0 (γ>1),bubuko.com,布布扣(?,u)|bubuko.com,布布扣t=0bubuko.com,布布扣={(?bubuko.com,布布扣?bubuko.com,布布扣,ububuko.com,布布扣?bubuko.com,布布扣),bubuko.com,布布扣(?bubuko.com,布布扣+bubuko.com,布布扣,ububuko.com,布布扣+bubuko.com,布布扣),bubuko.com,布布扣bubuko.com,布布扣x<0,bubuko.com,布布扣x>0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
如果 ?bubuko.com,布布扣?bubuko.com,布布扣=0bubuko.com,布布扣 , ?bubuko.com,布布扣+bubuko.com,布布扣>0bubuko.com,布布扣 , 上述 Riemannbubuko.com,布布扣 问题能用激波直接连接么? 请说明原因. 如果不能用激波直接连接, 用稀疏波能够连接真空么? 如果能, 请写出解答表达式.

 

Pseudo-differential Operators

注. 下列各题任选四题, 记分独立, 可以直接互相引用.

 

1设 mRbubuko.com,布布扣 , Λbubuko.com,布布扣mbubuko.com,布布扣(ξ)=(1+|ξ|bubuko.com,布布扣2bubuko.com,布布扣)bubuko.com,布布扣m/2bubuko.com,布布扣, ξRbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 . 证明: Λ(ξ)Sbubuko.com,布布扣mbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 ; 且对 ? sRbubuko.com,布布扣 , Λbubuko.com,布布扣mbubuko.com,布布扣(D): Hbubuko.com,布布扣sbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)Hbubuko.com,布布扣s?mbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 是连续的.

 

2已知引理. 令 KC(Rbubuko.com,布布扣nbubuko.com,布布扣×Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 满足

supbubuko.com,布布扣ybubuko.com,布布扣bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣|K(x,y)|dxC, supbubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣|K(x,y)|dyC.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Ku(x)=bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣K(x,y)u(y)dybubuko.com,布布扣 , 则 Kububuko.com,布布扣2bubuko.com,布布扣Cububuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 .

假设 a(x,ξ)Sbubuko.com,布布扣?n?1bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 . 证明: K(x,x?y)=bubuko.com,布布扣Rbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣ebubuko.com,布布扣?i(x?y)?ξbubuko.com,布布扣a(x,ξ)dξbubuko.com,布布扣 满足引理的条件.

 

3若 a(x,ξ)Sbubuko.com,布布扣?n?1bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 . 证明: a(x,D):Lbubuko.com,布布扣2bubuko.com,布布扣Lbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 是连续的, 并由此导出对 ? a(x,ξ)Sbubuko.com,布布扣?1bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 , a(x,D):Lbubuko.com,布布扣2bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)Lbubuko.com,布布扣2bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 连续.

 

4 设 a(x,ξ)Sbubuko.com,布布扣0bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 . 证明: a(x,D):Lbubuko.com,布布扣2bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)Lbubuko.com,布布扣2bubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 连续.

 

5设 a(x,ξ)Sbubuko.com,布布扣mbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 . 证明: a(x,D): Hbubuko.com,布布扣sbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)Hbubuko.com,布布扣s?mbubuko.com,布布扣(Rbubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣 连续.

 

[家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子,布布扣,bubuko.com

[家里蹲大学数学杂志]第013期2010年西安偏微分方程暑期班试题---NSE,非线性椭圆,平均曲率流,非线性守恒律,拟微分算子

原文:http://www.cnblogs.com/zhangzujin/p/3550479.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!