学过线性代数我们都知道,对于矩阵,很容易理解,它就是一个数表!但是对于行列式,就是一个数!我们自然会问,这个数到底是个神马玩意呢?为什么它就这么定义计算式呢?
线性代数中,我们知道给定的$n$阶方阵$A=(a_{ij})_{n\times n}$,其行列式的计算公式就定义为
其中$\tau_{\sigma}$是置换$\sigma$的符号,定义为
其中$k$为置换$\sigma$分解为不想交对换的分解式中对换的个数.
那么(*)这个公式到底是怎么来的呢?
我们先来看一个几何问题,三维空间中给定一个平行六面体
其中$\alpha_{i}\in\mathbb R^3$是以$A_3$某一顶点为起点的三条棱所对应的向量.我们显然有$A_{3}$中的点都形如
所以说我们用(1)中的矩阵来定义或表示一个平行六面体是合理的.由空间解析几何的知识我们知道
即为三向量$\alpha_{1},\alpha_{2},\alpha_{3}$之混合积的绝对值,计算公式即为
(这里一、二、三阶行列式的定义我们可以事先给出)事实上对于二维的平行六面体$A_{2}$,即平面中的平行四边形,我们也有类似的结论
这里的$\alpha_{i}$指$A_2$的具有同一起点的两条临边对应的向量.为了去掉(2),(3)中的绝对值,我们只要引入“有向体积”的概念,即允许体积取负值即可(这有点类似于多元微积分中我们为了消除${\rm d}x\wedge{\rm d}y$与${\rm d}y\wedge{\rm d}x$的区别,引入了可定向曲面的概念).当然我们可以事先约定一个正方向,比如在三维空间中我们可以约定如果有序向量组$\alpha_{1},\alpha_{2},\alpha_{3}$和$\mathbb R^3$中的有序基向量组$\overrightarrow i ,\overrightarrow j,\overrightarrow k $的定向一致,则相应的体积取正,否则取负.这样我们便得到了二维、三维(一维即为线段,这显然也是满足的)平行六面体(有向)体积统一的计算公式了
这里矩阵$\mathbb A$的定义前文已经提及.这样的话对于一般的$n$阶行列式
我们很自然的将其定义为由向量$\alpha_{i}\in \mathbb R^n$所对应的$n$维平行六面体的(有向)体积,更一般的我们可以将行列式$\det$看做函数
我们来看这个函数应当满足什么条件,也就是体积所具有的的性质,这里我们不加证明的给出
1)
换句话说函数$\det$在每个分量上都是线性的(这一点根据对应的平行六面体的构造方式来看是显然的),我们也把满足这种性质的函数叫做多重线性函数.
2)
也就是说交换函数$\det$某两个分量的位置,函数值是变号的(这一点根据有向体积的概念来看也是显然的),我们也把这样的函数称作反对称的.
3)$\det E=1$,这是由于单位阵$E=(e_{1},\cdots,e_{n})$,$e_{i}$为$n$维向量空间的标准正交基.
接下来我们就是要着手于证明满足(1),(2),(3)的函数$\det$必然具有"*"的计算公式.首先这样的函数存在是显然的,“*”式恰好给出了其一种存在性.
根据性质2)可知如果$A$中存在某两列相同,那么$\det A=0$,姑且把他记做性质(4).注意到
(推导过程中某些细节已经舍去,这些细节都是性质(1),(2),(4)的使用)这样便证明了*式之所以是行列式的原因了.
注记:由推导过程我们不难看出,如果某一个函数$\varphi: M_{n}(\mathbb F)\to\mathbb F$且满足性质(1),(2),即$\varphi$同时为矩阵列的多重线性函数和反对称函数,那么必有
此外行列式的公理化构造方式还有很多,这里只是举出其中一种相对比较直观的方式。
原文:http://www.cnblogs.com/xixifeng/p/3734474.html