当密度 ?
的正则性没有L
2
时, 我们用如下的震荡估计:
sup
k>1
lim?sup
δ→0
+
∥T
k
(?
δ
)?T
k
(?)∥
γ+1
≤L(Ω,f,g,m),
(1)

其中
证明:























lim?sup
δ→0
+
∫|T
k
(?
δ
)?T
k
(?)|
γ+1
≤lim?sup
δ→0
+
∫(?
δ
??)
γ
(T
k
(?
δ
)?T
k
(?))
≤lim?sup
δ→0
+
∫(?
γ
δ
??
γ
)(T
k
(?
δ
)?T
k
(?))
=∫?
γ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
??
γ
ˉ
ˉ
ˉ
T
k
(?)??
γ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
+?
γ
T
k
(?)
=∫?
γ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
??
γ
ˉ
ˉ
ˉ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ

+∫(?
γ
ˉ
ˉ
ˉ
??
γ
)(T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
?T
k
(?))
≤∫?
γ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
??
γ
ˉ
ˉ
ˉ
T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
(凸性)
=(λ+2μ)∫T
k
(?)divu
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
?T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
divu(有效粘性通量)
=(λ+2μ)lim?sup
δ→0
+
∫T
k
(?
δ
)divu
δ
?T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
divu
δ
≤(λ+2μ)lim?sup
δ→0
+
[∥u
δ
∥
2
?∥
∥
T
k
(?
δ
)?T
k
(?)
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
ˉ
∥
∥
2
]
≤Clim?sup
δ→0
+
∥T
k
(?
δ
)?T
k
(?)∥
γ+1
.


[家里蹲大学数学杂志]第031期密度的震荡控制,布布扣,bubuko.com
[家里蹲大学数学杂志]第031期密度的震荡控制
原文:http://www.cnblogs.com/zhangzujin/p/3736081.html