The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens‘ placement, where ‘Q‘
and ‘.‘
both
indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
class Solution { vector<bool> row,col,lslash,rslash; vector<int> pos; vector<vector<string>> result; public: void dfs(int deep,int n){ if(deep==n){ vector<string> ans; for(int i = 0; i < n; i++) { string s; for(int j = 0; j < pos[i]; j++) s += ‘.‘; s += ‘Q‘; for(int j = 0; j < n - (pos[i] + 1); j++) s += ‘.‘; ans.push_back(s); } result.push_back(ans); return; } for(int i=0;i<n;i++){ if(!row[deep]&&!col[i]&&!lslash[deep+i]&&!rslash[deep+n-1-i]){ row[deep]=col[i]=lslash[deep+i]=rslash[deep+n-1-i]=true; pos[deep]=i; dfs(deep+1,n); row[deep]=col[i]=lslash[deep+i]=rslash[deep+n-1-i]=false; } } } vector<vector<string> > solveNQueens(int n) { row.assign(n,false);//某行是否有皇后了 col.assign(n,false);//某列是否有皇后了 lslash.assign(2*n,false);//左斜线是否有皇后了 rslash.assign(2*n,false);//右斜线是否有皇后了 pos.assign(n,0); dfs(0,n); return result; } };
原文:http://blog.csdn.net/starcuan/article/details/18862175