微软提供的人脸识别服务可检测图片中一个或者多个人脸,并为人脸标记出边框,同时还可获得基于机器学习技术做出的面部特征预测。可支持的人脸功能有:年龄、性别、头部姿态、微笑检测、胡须检测以及27个面部重要特征点位置等。FaceAPI 提供两个主要功能: 人脸检测和识别
目录:
申请订阅号
示例效果
开发过程
using (Stream s = new MemoryStream(bytes))
{
var requiredFaceAttributes = new FaceAttributeType[] {
FaceAttributeType.Age,
FaceAttributeType.Gender,
FaceAttributeType.Smile,
FaceAttributeType.FacialHair,
FaceAttributeType.HeadPose,
FaceAttributeType.Glasses
};
var faces = await Utils.FaceClient.DetectAsync(s,
returnFaceLandmarks: true,
returnFaceAttributes: requiredFaceAttributes);
}
也可直接使用http请求,参见:https://dev.projectoxford.ai/docs/services/563879b61984550e40cbbe8d/operations/563879b61984550f30395236
参数信息如下:
http post 示例代码:
string URL = "你图片的url";
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
// Request headers
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "你申请的key");
// Request parameters
queryString["returnFaceId"] = "true";
queryString["returnFaceLandmarks"] = "false";
queryString["returnFaceAttributes"] = "age,gender,smile";
var uri = "https://api.projectoxford.ai/face/v1.0/detect?" + queryString;
HttpResponseMessage response;
byte[] byteData = Encoding.UTF8.GetBytes("{\"url\":\"" + URL + "\"}");
using (var content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/json");
var task = client.PostAsync(uri, content);
response = task.Result;
var task1 = response.Content.ReadAsStringAsync();
string JSON = task1.Result;
}
人脸识别http参数如下:(注意:要识别出人脸的身份,你必须先定义person,参见 personGroup 、Person介绍 https://www.azure.cn/cognitive-services/en-us/face-api/documentation/face-api-how-to-topics/howtoidentifyfacesinimage)
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "XXX");
var uri = "https://api.projectoxford.ai/face/v1.0/identify ";
HttpResponseMessage response;
byte[] byteData = Encoding.UTF8.GetBytes("{\"faceIds\":[\"XXX\"],\"personGroupId\":\"XXX\",\"maxNumOfCandidatesReturned\":5}");
using (var content = new ByteArrayContent(byteData))
{
content.Headers.ContentType = new MediaTypeHeaderValue("application/json");
var task = client.PostAsync(uri, content);
response = task.Result;
var task1 = response.Content.ReadAsStringAsync();
string JSON = task1.Result;
}
var client = new HttpClient();
var queryString = HttpUtility.ParseQueryString(string.Empty);
client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-Key", "你申请的key");
var uri = "https://api.projectoxford.ai/face/v1.0/persongroups/你上传的分组/persons/" + personID;
var task = client.GetStringAsync(uri);
var response = task.Result;
return JsonConvert.DeserializeObject<Person>(task.Result);
AForge.Net
FilterInfoCollection videoDevices;
VideoCaptureDevice videoSource;
public int selectedDeviceIndex = 0;
videoDevices = new FilterInfoCollection(FilterCategory.VideoInputDevice);
selectedDeviceIndex = 0;
videoSource = new VideoCaptureDevice(videoDevices[selectedDeviceIndex].MonikerString);//连接摄像头。
videoSource.VideoResolution = videoSource.VideoCapabilities[selectedDeviceIndex];
videoSourcePlayer1.VideoSource = videoSource;
// set NewFrame event handler
videoSourcePlayer1.Start();
抓拍示代码
if (videoSource == null)
return;
Bitmap bitmap = videoSourcePlayer1.GetCurrentVideoFrame();
string fileName = string.Format("{0}.jpg", DateTime.Now.ToString("yyyyMMddHHmmssfff"));
this.filePath = string.Format("c:\\temp\\{0}", fileName);
bitmap.Save(this.filePath, ImageFormat.Jpeg);
this.labelControl1.Text = string.Format("存储目录:{0}", this.filePath);
bitmap.Dispose();
videoDevices.Clear();
窗体关闭事件
if (this.videoSource != null)
{
if (this.videoSource.IsRunning)
{
this.videoSource.Stop();
}
}
示例效果
原文:http://www.cnblogs.com/tgzhu/p/6207425.html