首页 > 其他 > 详细

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

时间:2014-05-22 08:31:21      阅读:612      评论:0      收藏:0      [点我收藏+]

 1. 方程  考虑 Rbubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣 中有界区域 Ωbubuko.com,布布扣 上如下的稳态流动:

{div(?u)=0,bubuko.com,布布扣div(?u?u)?μu?(λ+μ)?divu+??bubuko.com,布布扣γbubuko.com,布布扣=?f+g.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(1)bubuko.com,布布扣bubuko.com,布布扣
  

 

2. 假设  先作一些初步的假设:   

2.1. γ>3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 ---保证对流项 div(?u?u)bubuko.com,布布扣 可看成 (1)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 的扰动;   

2.2. μ>0bubuko.com,布布扣 , λ+2bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣μ0bubuko.com,布布扣 ---Navier-Stokes 假设;   

2.3. 考虑非滑动边界---u=0bubuko.com,布布扣 ?Ωbubuko.com,布布扣 上. 这时可将 Navier-Stokes 假设放宽为

μ>0,λ+4bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣μ>0;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

2.4. 当 γ5bubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 时, fbubuko.com,布布扣 适合 curlf=0bubuko.com,布布扣 --- 此时密度的可积性实在太差, 须将用 εbubuko.com,布布扣 -Young 不等式打出来的指标下降, 为此须巧妙的通过 (1)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 把一端零消失:

bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣curlf=0bubuko.com,布布扣f=?φbubuko.com,布布扣?f?u=?u??φ=?div(?u)φ=0;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

2.5. ?=M>0bubuko.com,布布扣 ---质量守恒.    

 

3. 弱解的三重逼近  那么怎么证明 (1)bubuko.com,布布扣 有弱解呢?   

3.1. 注意到 (1)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 是退化双曲的, 自然的引进 damping 项 α?(α>0)bubuko.com,布布扣 :

α?+div(?u)=?.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
为保证质量守恒, 右端须加上 αhbubuko.com,布布扣 :
α?+div(?u)=αh,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
其中 hbubuko.com,布布扣 满足:
h=M.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
再看 (1)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 , 注意到
div(?u?u)?ububuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣div(?u)|u|bubuko.com,布布扣2bubuko.com,布布扣+?u??|u|bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(?u)|u|bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣(h??)|u|bubuko.com,布布扣2bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
为保证能量不等式还能有效利用, 我们在 (1)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 中加上
αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣hu+3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?ububuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
(这样就出现了 α(h+?)|u|bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 ):
αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣hu+3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?u+div(?u?u)?μu?(λ+μ)?divu+??bubuko.com,布布扣γbubuko.com,布布扣=?f+g.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
综上所述, 第一次逼近为
?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣α?+div(?u)=αh,bubuko.com,布布扣αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣hu+3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?u+div(?u?u)?μu?(λ+μ)?divu+??bubuko.com,布布扣γbubuko.com,布布扣=?f+g.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(2)bubuko.com,布布扣bubuko.com,布布扣

3.2. 注意到 (2)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 是椭圆方程组, 而椭圆组具有很好的存在正则性理论. 为啥不将 (2)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 也椭圆正则化呢? 于是我们将 (2)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 转化为

α?+div(?u)?ε?=αh(ε>0).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
此时, (2)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 也应相应的变动(以适合能量不等式), 怎么办呢? 注意到
div(?u?u)?ububuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(?u)|u|bubuko.com,布布扣2bubuko.com,布布扣(=?(?u??u)?u)bubuko.com,布布扣1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣[α(h??+ε?]|u|bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣(h??)|u|bubuko.com,布布扣2bubuko.com,布布扣?ε?bubuko.com,布布扣ibubuko.com,布布扣??bubuko.com,布布扣ibubuko.com,布布扣ububuko.com,布布扣jbubuko.com,布布扣ububuko.com,布布扣jbubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
最后那个式子
ε?bubuko.com,布布扣ibubuko.com,布布扣??bubuko.com,布布扣ibubuko.com,布布扣ububuko.com,布布扣jbubuko.com,布布扣ububuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
最好不要出现在能量不等式中(那样就更简单了). 怎么办呢? 观察上式, 有
[div(?u?u+?u??u]?u=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
故为啥不把 (2)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 中的 div(?u?u)bubuko.com,布布扣 换成
1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(?u?u+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?u??ububuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
呢? 此时, 在第一次逼近中的导入的
αbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣hu+3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?ububuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
就可直接点了:
α?u+αhu.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
这样, 我们获得了第二次逼近:
?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣α?+div(?u)?ε?=αh,bubuko.com,布布扣αhu+α?u+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(?u?u)+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?u??ububuko.com,布布扣?μu?(λ+μ)?divu+??bubuko.com,布布扣γbubuko.com,布布扣=?f+g.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(3)bubuko.com,布布扣bubuko.com,布布扣
   

3.3. 对于 (3)bubuko.com,布布扣 , 我们大概可以用 Leray-Schauder 不动点定理证明弱解的存在性. 回忆   Leray-Schauder 不动点定理. 设 Xbubuko.com,布布扣 是一 Banachbubuko.com,布布扣 空间, D?Xbubuko.com,布布扣 为其一有界开集. 再设 H:Dbubuko.com,布布扣ˉbubuko.com,布布扣×[0,1]Xbubuko.com,布布扣 是一紧算子的同伦, 满足   (1) ? ububuko.com,布布扣0bubuko.com,布布扣D, s.t. H(ububuko.com,布布扣0bubuko.com,布布扣,0)=ububuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 ; (2) 0(I?H(?,t))(?D), t[0,1]bubuko.com,布布扣 .   则

? t[0,1], ? ububuko.com,布布扣tbubuko.com,布布扣D, s.t. H(ububuko.com,布布扣tbubuko.com,布布扣,t)=ububuko.com,布布扣tbubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 注记. 在 PDE 中, 为应用 Leray-Schauder 不动点定理, 仅须作先验估计及利用 Sobolev 紧嵌入.  故而通过求解过程
u?bubuko.com,布布扣质量守恒bubuko.com,布布扣?=S(u)?bubuko.com,布布扣动量守恒bubuko.com,布布扣u,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
我们先用 Leray-Schauder 不动点定理证明
?ε?=α(h??)?div(?u)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
有解 ?=S(u)bubuko.com,布布扣 , 然后再次用之得到
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?μu?(λ+μ)?divububuko.com,布布扣=?[ αhu+αS(u)u+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(S(u)u?u)+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣S(u)u??ububuko.com,布布扣+?S(u)bubuko.com,布布扣γbubuko.com,布布扣?S(u)f?gbubuko.com,布布扣]bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
的解 ububuko.com,布布扣 . 如此, (S(u),u)bubuko.com,布布扣 就是 (1)bubuko.com,布布扣 的弱解了.  剩下就是构造合适的工作空间. 注意到质量守恒本身就是带输运的, 自然
uWbubuko.com,布布扣1,bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
那么 ??bubuko.com,布布扣 引入 Bogovskii 算子 Bbubuko.com,布布扣 , 我们有
?ε?=div[αB(h??)??u].bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
于是
??bubuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Cbubuko.com,布布扣εbubuko.com,布布扣bubuko.com,布布扣αB(h??)??ububuko.com,布布扣sbubuko.com,布布扣bubuko.com,布布扣Cbubuko.com,布布扣εbubuko.com,布布扣bubuko.com,布布扣[αhbubuko.com,布布扣sbubuko.com,布布扣+?bubuko.com,布布扣sbubuko.com,布布扣]bubuko.com,布布扣Cbubuko.com,布布扣εbubuko.com,布布扣bubuko.com,布布扣hbubuko.com,布布扣sbubuko.com,布布扣(?bubuko.com,布布扣sbubuko.com,布布扣Chbubuko.com,布布扣sbubuko.com,布布扣, s1bubuko.com,布布扣+bubuko.com,布布扣,bubuko.com,布布扣直观上可以看作是质量守恒的正则化扰动bubuko.com,布布扣).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
如此, 通过 Sobolev 嵌入及 Bootstrap,
?bubuko.com,布布扣1,pbubuko.com,布布扣C(u)hbubuko.com,布布扣pbubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
从而再由正则性理论,
?bubuko.com,布布扣2,pbubuko.com,布布扣C(u)hbubuko.com,布布扣pbubuko.com,布布扣(? 1<p<).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
为了有紧, 同样可设
?Wbubuko.com,布布扣1,bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
工作空间选好了, 那些先验估计就是 technical 的了.  这样, 我们就可以取极限 (比如 ε0bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣 , α0bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣 ). 但现在问题来了, 压力项的极限怎么办? (其他项由 div-curl 引理而容易处理)? 为此, 引入人工压力项 δ(?bubuko.com,布布扣2bubuko.com,布布扣+?bubuko.com,布布扣βbubuko.com,布布扣)bubuko.com,布布扣 (βbubuko.com,布布扣 充分大, 2bubuko.com,布布扣 是技术处理, 以获得密度的更高可积性, 而有更好的强收敛, 有重整化解, 对 γ>3/2bubuko.com,布布扣 能够统一处理), 而得到第三次逼近
?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣α?+div(?u)?ε?=αh,bubuko.com,布布扣αhu+α?u+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣div(?u?u)+1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣?u??ububuko.com,布布扣?μu?(λ+μ)?divu+?(?bubuko.com,布布扣γbubuko.com,布布扣+δ(?bubuko.com,布布扣2bubuko.com,布布扣+?bubuko.com,布布扣βbubuko.com,布布扣))=?f+g.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(4)bubuko.com,布布扣bubuko.com,布布扣
  

 

4. 极限过程.  为保证密度的强收敛性, 我们选取如下的极限过程:

ε0bubuko.com,布布扣+bubuko.com,布布扣?α0bubuko.com,布布扣+bubuko.com,布布扣?δ0bubuko.com,布布扣+bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
  

4.1. 消失椭圆正则化.  不写那么多了, 关键是

?Lbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣? 重整化解bubuko.com,布布扣?bubuko.com,布布扣θbubuko.com,布布扣bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣θbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 适合方程(利用有效粘性通量, 0<θ<1)bubuko.com,布布扣?bubuko.com,布布扣αbubuko.com,布布扣  Lbubuko.com,布布扣1bubuko.com,布布扣 强收敛性.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

4.2. 消失 damping.  基本上同上.   

4.3. 消失人工压力.  直观上通过 Riesz 变化得到

?Lbubuko.com,布布扣s(γ)bubuko.com,布布扣, s(γ)=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣3(γ?1),bubuko.com,布布扣2γ,bubuko.com,布布扣bubuko.com,布布扣3bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣<γ3,bubuko.com,布布扣γ3.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
故而当 γ5/3bubuko.com,布布扣 时, ?Lbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 , 而同上讨论. 当 3/2<γ<5/3bubuko.com,布布扣 时, 我们去 cut-off:
?bubuko.com,布布扣δbubuko.com,布布扣??bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣δbubuko.com,布布扣?Tbubuko.com,布布扣kbubuko.com,布布扣(?bubuko.com,布布扣δbubuko.com,布布扣)bubuko.com,布布扣1bubuko.com,布布扣+Tbubuko.com,布布扣kbubuko.com,布布扣(?bubuko.com,布布扣δbubuko.com,布布扣)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣1bubuko.com,布布扣+Tbubuko.com,布布扣kbubuko.com,布布扣(?)??bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣Ibubuko.com,布布扣1bubuko.com,布布扣+Ibubuko.com,布布扣2bubuko.com,布布扣+Ibubuko.com,布布扣3bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
其中
Tbubuko.com,布布扣kbubuko.com,布布扣(t)={t,bubuko.com,布布扣k,bubuko.com,布布扣bubuko.com,布布扣tk,bubuko.com,布布扣tk.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Ibubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 , Ibubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣 可类似估计:
Ibubuko.com,布布扣3bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(??k)1bubuko.com,布布扣?kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣s(γ)bubuko.com,布布扣|{?k}|bubuko.com,布布扣1?1bubuko.com,布布扣s(γ)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣C(Mbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣1?1bubuko.com,布布扣s(γ)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0(k+).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
仅须考虑
Ibubuko.com,布布扣2bubuko.com,布布扣=Tbubuko.com,布布扣kbubuko.com,布布扣(?bubuko.com,布布扣δbubuko.com,布布扣)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣1bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
这是(有限)密度震荡, 直观上应有很好的正则性. 联系方程 (1)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣 , 我们导入
limbubuko.com,布布扣δ0bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣kbubuko.com,布布扣(?bubuko.com,布布扣δbubuko.com,布布扣)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣γ+1bubuko.com,布布扣Cbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
(参见张祖锦, 密度的震荡控制, 家里蹲大学数学杂志. 第  2 卷第  31 期, (2011), 195--195.), 而也通过 cut-off 有 ?bubuko.com,布布扣 适合重整化. 最后由
bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣limbubuko.com,布布扣δ0bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣kbubuko.com,布布扣(?bubuko.com,布布扣δbubuko.com,布布扣)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣γ+1bubuko.com,布布扣bubuko.com,布布扣(λ+2μ)divuTbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣?divuTbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=(λ+2μ)?divLbubuko.com,布布扣kbubuko.com,布布扣(?)?divuTbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣(Lbubuko.com,布布扣kbubuko.com,布布扣(t)={tlnt,bubuko.com,布布扣tlnk+t?k,bubuko.com,布布扣bubuko.com,布布扣t[0,k),bubuko.com,布布扣t[k,)bubuko.com,布布扣bubuko.com,布布扣 满足 tLbubuko.com,布布扣bubuko.com,布布扣kbubuko.com,布布扣(t)?Lbubuko.com,布布扣kbubuko.com,布布扣(t)=Tbubuko.com,布布扣kbubuko.com,布布扣(t))bubuko.com,布布扣=(λ+2μ)div(Tbubuko.com,布布扣kbubuko.com,布布扣(?)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣(div(Lbubuko.com,布布扣kbubuko.com,布布扣(?)u)+Tbubuko.com,布布扣kbubuko.com,布布扣(?)divu=0)bubuko.com,布布扣(λ+2μ)divububuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣kbubuko.com,布布扣(?)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣γ?1bubuko.com,布布扣2γbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣kbubuko.com,布布扣(?)?Tbubuko.com,布布扣kbubuko.com,布布扣(?)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣γ+1bubuko.com,布布扣2γbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣γ+1bubuko.com,布布扣bubuko.com,布布扣C(Tbubuko.com,布布扣kbubuko.com,布布扣(?)??bubuko.com,布布扣1bubuko.com,布布扣+bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣kbubuko.com,布布扣(?)??bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣)bubuko.com,布布扣γ?1bubuko.com,布布扣2γbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0(k)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Ibubuko.com,布布扣2bubuko.com,布布扣0 (k, δ0bubuko.com,布布扣+bubuko.com,布布扣)bubuko.com,布布扣 .

 

至此, (1)bubuko.com,布布扣 弱解的存在性证毕.

 

来源: 家里蹲大学数学杂志第2卷第33期稳态可压Navier-Stokes方程弱解的存在性

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性,布布扣,bubuko.com

[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性

原文:http://www.cnblogs.com/zhangzujin/p/3543410.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!