首页 > 编程语言 > 详细

pandas基础-Python3

时间:2017-01-03 07:54:24      阅读:171      评论:0      收藏:0      [点我收藏+]

 

未完

 

for examples:

 

example 1:

 1 # Code based on Python 3.x
 2 # _*_ coding: utf-8 _*_
 3 # __Author: "LEMON"
 4 
 5 import pandas as pd
 6 
 7 d = pd.date_range(20170101, periods=7)
 8 aList = list(range(1,8))
 9 
10 df = pd.DataFrame(aList, index=d, columns=[ ])
11 df.index.name = value
12 
13 print(----------df.index---------)
14 print(df.index)
15 
16 print(---------df.columns---------)
17 print(df.columns)
18 
19 print(----------df.values---------)
20 print(df.values)
21 
22 print(----------df.describe--------)
23 print(df.describe)
24 
25 print(----------information details--------)
26 print(df.head(2)) #获取开始的n条记录
27 print(df.tail(3)) #后去最后的n条记录
28 print(df[3:5])  # df[a:b],获取第a+1至第b-1的记录

运行结果如下:

 1 ----------df.index---------
 2 DatetimeIndex([2017-01-01, 2017-01-02, 2017-01-03, 2017-01-04,
 3                2017-01-05, 2017-01-06, 2017-01-07],
 4               dtype=datetime64[ns], name=value, freq=D)
 5 ---------df.columns---------
 6 Index([ ], dtype=object)
 7 ----------df.values---------
 8 [[1]
 9  [2]
10  [3]
11  [4]
12  [5]
13  [6]
14  [7]]
15 ----------df.describe--------
16 <bound method NDFrame.describe of              
17 value        
18 2017-01-01  1
19 2017-01-02  2
20 2017-01-03  3
21 2017-01-04  4
22 2017-01-05  5
23 2017-01-06  6
24 2017-01-07  7>
25 ----------information details--------
26              
27 value        
28 2017-01-01  1
29 2017-01-02  2
30              
31 value        
32 2017-01-05  5
33 2017-01-06  6
34 2017-01-07  7
35              
36 value        
37 2017-01-04  4
38 2017-01-05  5

 

example 2:

 1 # Code based on Python 3.x
 2 # _*_ coding: utf-8 _*_
 3 # __Author: "LEMON"
 4 
 5 from pandas import Series, DataFrame
 6 import pandas as pd
 7 
 8 data = {state: [Ohino, Ohino, Ohino, Nevada, Nevada],
 9         year: [2000, 2001, 2002, 2001, 2002],
10         pop: [1.5, 1.7, 3.6, 2.4, 2.9]}
11 
12 df = DataFrame(data, index=list(range(1, 6)),
13                columns=[year, state, pop, name])
14 print(df)
15 
16 print(\n, ---------------)
17 print(list(df.ix[3]))
18 
19 print(\n, ---------------)
20 print(list(df[year]))
21 
22 aList = [1, 2, 3, 4]
23 bList = [aa, bb, cb, dd]
24 cList = [lemon, apple, orange, banana]
25 
26 d = {num: aList, char: bList, fruit: cList}
27 
28 
29 df1 = DataFrame(d, index=[a, b, c, d])
30 # df2 = DataFrame(bList)
31 print(\n, ---------------)
32 print(df1)
33 #print(df1.num)
34 
35 print(\n, ---------------)
36 print(df1.ix[b])  # 获取索引号为 ‘b‘ 的行的数据
37 
38 
39 print(\n, ---------------)
40 print(df1.ix[:2, 1:3]) # 以切片形式获取部分数据

运行结果如下:

 1  year   state  pop name
 2 1  2000   Ohino  1.5  NaN
 3 2  2001   Ohino  1.7  NaN
 4 3  2002   Ohino  3.6  NaN
 5 4  2001  Nevada  2.4  NaN
 6 5  2002  Nevada  2.9  NaN
 7 
 8  ---------------
 9 [2002, Ohino, 3.6000000000000001, nan]
10 
11  ---------------
12 [2000, 2001, 2002, 2001, 2002]
13 
14  ---------------
15   char   fruit num
16 a   aa   lemon   1
17 b   bb   apple   2
18 c   cb  orange   3
19 d   dd  banana   4
20 
21  ---------------
22 char        bb
23 fruit    apple
24 num          2
25 Name: b, dtype: object
26 
27  ---------------
28    fruit num
29 a  lemon   1
30 b  apple   2

 

pandas基础-Python3

原文:http://www.cnblogs.com/lemonbit/p/6243513.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!