首页 > 其他 > 详细

MapReduce TopK统计加排序

时间:2014-05-21 22:29:37      阅读:532      评论:0      收藏:0      [点我收藏+]

Hadoop技术内幕中指出Top K算法有两步,一是统计词频,二是找出词频最高的前K个词。在网上找了很多MapReduce的Top K案例,这些案例都只有排序功能,所以自己写了个案例。

这个案例分两个步骤,第一个是就是wordCount案例,二就是排序功能。

一,统计词频

bubuko.com,布布扣
 1 package TopK;
 2 import java.io.IOException;
 3 import java.util.StringTokenizer;
 4 
 5 import org.apache.hadoop.conf.Configuration;
 6 import org.apache.hadoop.fs.Path;
 7 import org.apache.hadoop.io.IntWritable;
 8 import org.apache.hadoop.io.Text;
 9 import org.apache.hadoop.mapreduce.Job;
10 import org.apache.hadoop.mapreduce.Mapper;
11 import org.apache.hadoop.mapreduce.Reducer;
12 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
13 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
14 
15 /**
16  * 统计词频
17  * @author zx
18  * zhangxian1991@qq.com
19  */
20 public class WordCount {
21     
22     /**
23      * 读取单词
24      * @author zx
25      *
26      */
27     public static class Map extends Mapper<Object,Text,Text,IntWritable>{
28 
29         IntWritable count = new IntWritable(1);
30         
31         @Override
32         protected void map(Object key, Text value, Context context)
33                 throws IOException, InterruptedException {
34             StringTokenizer st = new StringTokenizer(value.toString());
35             while(st.hasMoreTokens()){    
36                 String word = st.nextToken().replaceAll("\"", "").replace("‘", "").replace(".", "");
37                 context.write(new Text(word), count);
38             }
39         }
40         
41     }
42     
43     /**
44      * 统计词频
45      * @author zx
46      *
47      */
48     public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
49 
50         @SuppressWarnings("unused")
51         @Override
52         protected void reduce(Text key, Iterable<IntWritable> values,Context context)
53                 throws IOException, InterruptedException {
54             int count = 0;
55             for (IntWritable intWritable : values) {
56                 count ++;
57             }
58             context.write(key,new IntWritable(count));
59         }
60         
61     }
62     
63     @SuppressWarnings("deprecation")
64     public static boolean run(String in,String out) throws IOException, ClassNotFoundException, InterruptedException{
65         
66         Configuration conf = new Configuration();
67         
68         Job job = new Job(conf,"WordCount");
69         job.setJarByClass(WordCount.class);
70         job.setMapperClass(Map.class);
71         job.setReducerClass(Reduce.class);
72         
73         // 设置Map输出类型
74         job.setMapOutputKeyClass(Text.class);
75         job.setMapOutputValueClass(IntWritable.class);
76 
77         // 设置Reduce输出类型
78         job.setOutputKeyClass(Text.class);
79         job.setOutputValueClass(IntWritable.class);
80 
81         // 设置输入和输出目录
82         FileInputFormat.addInputPath(job, new Path(in));
83         FileOutputFormat.setOutputPath(job, new Path(out));
84         
85         return job.waitForCompletion(true);
86     }
87     
88 }
bubuko.com,布布扣

二,排序 并求出频率最高的前K个词

bubuko.com,布布扣
  1 package TopK;
  2 
  3 import java.io.IOException;
  4 import java.util.Comparator;
  5 import java.util.Map.Entry;
  6 import java.util.Set;
  7 import java.util.StringTokenizer;
  8 import java.util.TreeMap;
  9 import java.util.regex.Pattern;
 10 
 11 import org.apache.hadoop.conf.Configuration;
 12 import org.apache.hadoop.fs.Path;
 13 import org.apache.hadoop.io.IntWritable;
 14 import org.apache.hadoop.io.Text;
 15 import org.apache.hadoop.mapreduce.Job;
 16 import org.apache.hadoop.mapreduce.Mapper;
 17 import org.apache.hadoop.mapreduce.Reducer;
 18 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 19 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 20 import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
 21 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 22 
 23 /**
 24  * 以单词出现的频率排序
 25  * 
 26  * @author zx
 27  * zhangxian1991@qq.com
 28  */
 29 public class Sort {
 30 
 31     /**
 32      * 读取单词(词频 word)
 33      * 
 34      * @author zx
 35      * 
 36      */
 37     public static class Map extends Mapper<Object, Text, IntWritable, Text> {
 38 
 39         // 输出key 词频
 40         IntWritable outKey = new IntWritable();
 41         Text outValue = new Text();
 42 
 43         @Override
 44         protected void map(Object key, Text value, Context context)
 45                 throws IOException, InterruptedException {
 46 
 47             StringTokenizer st = new StringTokenizer(value.toString());
 48             while (st.hasMoreTokens()) {
 49                 String element = st.nextToken();
 50                 if (Pattern.matches("\\d+", element)) {
 51                     outKey.set(Integer.parseInt(element));
 52                 } else {
 53                     outValue.set(element);
 54                 }
 55             }
 56 
 57             context.write(outKey, outValue);
 58         }
 59 
 60     }
 61 
 62     /**
 63      * 根据词频排序
 64      * 
 65      * @author zx
 66      * 
 67      */
 68     public static class Reduce extends
 69             Reducer<IntWritable, Text, Text, IntWritable> {
 70         
 71         private static MultipleOutputs<Text, IntWritable> mos = null;
 72         
 73         //要获得前K个频率最高的词
 74         private static final int k = 10;
 75         
 76         //用TreeMap存储可以利用它的排序功能
 77         //这里用 MyInt 因为TreeMap是对key排序,且不能唯一,而词频可能相同,要以词频为Key就必需对它封装
 78         private static TreeMap<MyInt, String> tm = new TreeMap<MyInt, String>(new Comparator<MyInt>(){
 79             /**
 80              * 默认是从小到大的顺序排的,现在修改为从大到小
 81              * @param o1
 82              * @param o2
 83              * @return
 84              */
 85             @Override
 86             public int compare(MyInt o1, MyInt o2) {
 87                 return o2.compareTo(o1);
 88             }
 89             
 90         }) ;
 91         
 92         /*
 93          * 以词频为Key是要用到reduce的排序功能
 94          */
 95         @Override
 96         protected void reduce(IntWritable key, Iterable<Text> values,
 97                 Context context) throws IOException, InterruptedException {
 98             for (Text text : values) {
 99                 context.write(text, key);
100                 tm.put(new MyInt(key.get()),text.toString());
101                 
102                 //TreeMap以对内部数据进行了排序,最后一个必定是最小的
103                 if(tm.size() > k){
104                     tm.remove(tm.lastKey());
105                 }
106                 
107             }
108         }
109 
110         @Override
111         protected void cleanup(Context context)
112                 throws IOException, InterruptedException {
113             String path = context.getConfiguration().get("topKout");
114             mos = new MultipleOutputs<Text, IntWritable>(context);
115             Set<Entry<MyInt, String>> set = tm.entrySet();
116             for (Entry<MyInt, String> entry : set) {
117                 mos.write("topKMOS", new Text(entry.getValue()), new IntWritable(entry.getKey().getValue()), path);
118             }
119             mos.close();
120         }
121 
122         
123         
124     }
125 
126     @SuppressWarnings("deprecation")
127     public static void run(String in, String out,String topKout) throws IOException,
128             ClassNotFoundException, InterruptedException {
129 
130         Path outPath = new Path(out);
131 
132         Configuration conf = new Configuration();
133         
134         //前K个词要输出到哪个目录
135         conf.set("topKout",topKout);
136         
137         Job job = new Job(conf, "Sort");
138         job.setJarByClass(Sort.class);
139         job.setMapperClass(Map.class);
140         job.setReducerClass(Reduce.class);
141 
142         // 设置Map输出类型
143         job.setMapOutputKeyClass(IntWritable.class);
144         job.setMapOutputValueClass(Text.class);
145 
146         // 设置Reduce输出类型
147         job.setOutputKeyClass(Text.class);
148         job.setOutputValueClass(IntWritable.class);
149 
150         //设置MultipleOutputs的输出格式
151         //这里利用MultipleOutputs进行对文件输出
152         MultipleOutputs.addNamedOutput(job,"topKMOS",TextOutputFormat.class,Text.class,Text.class);
153         
154         // 设置输入和输出目录
155         FileInputFormat.addInputPath(job, new Path(in));
156         FileOutputFormat.setOutputPath(job, outPath);
157         job.waitForCompletion(true);
158 
159     }
160 
161 }
bubuko.com,布布扣

自己封装的Int

bubuko.com,布布扣
 1 package TopK;
 2 
 3 public class MyInt implements Comparable<MyInt>{
 4     private Integer value;
 5 
 6     public MyInt(Integer value){
 7         this.value = value;
 8     }
 9     
10     public int getValue() {
11         return value;
12     }
13 
14     public void setValue(int value) {
15         this.value = value;
16     }
17 
18     @Override
19     public int compareTo(MyInt o) {
20         return value.compareTo(o.getValue());
21     }
22     
23     
24 }
bubuko.com,布布扣

运行入口

bubuko.com,布布扣
 1 package TopK;
 2 
 3 import java.io.IOException;
 4 
 5 /**
 6  * 
 7  * @author zx
 8  *zhangxian1991@qq.com
 9  */
10 public class TopK {
11     public static void main(String args[]) throws ClassNotFoundException, IOException, InterruptedException{
12         
13         //要统计字数,排序的文字
14         String in = "hdfs://localhost:9000/input/MaDing.text";
15         
16         //统计字数后的结果
17         String wordCout = "hdfs://localhost:9000/out/wordCout";
18         
19         //对统计完后的结果再排序后的内容
20         String sort = "hdfs://localhost:9000/out/sort";
21         
22         //前K条
23         String topK = "hdfs://localhost:9000/out/topK";
24         
25         //如果统计字数的job完成后就开始排序
26         if(WordCount.run(in, wordCout)){
27             Sort.run(wordCout, sort,topK);
28         }
29         
30     }
31 }
bubuko.com,布布扣

 

MapReduce TopK统计加排序,布布扣,bubuko.com

MapReduce TopK统计加排序

原文:http://www.cnblogs.com/chaoku/p/3739145.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!