首页 > 其他 > 详细

BZOJ 2818: Gcd

时间:2017-01-10 19:27:03      阅读:209      评论:0      收藏:0      [点我收藏+]

2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 4502  Solved: 1994
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

 

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

对于样例(2,2),(2,4),(3,3),(4,2)


1<=N<=10^7

 

Source

[Submit][Status][Discuss]

 

和上一道题 2190仪仗队 很像,只是这次不是要求gcd(x,y)为1,而是质数(独孤大神告诉我,1不是素数,2333)。

可以先处理出$x,y \leq N$下使得$gcd(x,y)=1$的数对个数,记为$ans_{N}$,这个还是可以用$phi_{i}$的求和做到,然后枚举gcd是素数$i$,其答案为$ans_{\frac{n}{i}}$,累加即可。

 

 1 #include <bits/stdc++.h>
 2 typedef unsigned long long ull;
 3 const int siz = 10000005;
 4 int n, pri[siz], isp[siz], tot; ull phi[siz], ans[siz];
 5 signed main(void) {
 6     scanf("%d", &n);
 7     for (int i = 2; i <= n; ++i) {
 8         if (!isp[i])pri[tot++] = i, phi[i] = i - 1;
 9         for (int j = 0; j < tot; ++j) {
10             if (i * pri[j] > n)break;
11             isp[i * pri[j]] = 1;
12             if (i % pri[j])
13                 phi[i * pri[j]] = phi[i] * (pri[j] - 1);
14             else {
15                 phi[i * pri[j]] = phi[i] * pri[j]; break; }
16         }
17     }
18     ans[1] = 1;
19     for (int i = 2; i <= n; ++i)
20         ans[i] = ans[i - 1] + phi[i] * 2;
21     ull answer = 0;
22     for (int i = 0; i < tot && pri[i] <= n; ++i) 
23         answer += ans[n / pri[i]];
24     std::cout << answer << std::endl;
25 }

 

@Author: YouSiki

 

BZOJ 2818: Gcd

原文:http://www.cnblogs.com/yousiki/p/6270267.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!