判断一个图是否有环,有环图如下:
这里唯一注意的就是,这是个有向图, 边组成一个环,不一定成环,因为方向可以不一致。
这里就是增加一个数组保存当前已经访问过的路径信息 recStack[];
而visited[]数组是访问过的点的信息,两者作用是不一样的。
知道这个知识点,这道题就很容易了。
原文:
http://www.geeksforgeeks.org/detect-cycle-in-a-graph/
#include <stdio.h> #include <list> #include <limits.h> #include <iostream> using namespace std; class DetectCycleinaDirectedGraph { int size; list<int> *adj; bool isCycleUtil(int v, bool visited[], bool *recStack) { if (!visited[v]) { //本题巧妙之处:额外增加recStack,because it is directed, if it is undirected, then we don‘t really need recStack. visited[v] = recStack[v] = true; list<int>::iterator it = adj[v].begin(); for ( ; it != adj[v].end(); it++) { if (!visited[*it] && isCycleUtil(*it, visited, recStack)) return true; else if (recStack[*it]) return true; } recStack[v] = false; } return false; } public: DetectCycleinaDirectedGraph(int v) : size(v) { adj = new list<int>[size]; } void addEdge(int v, int w) { adj[v].push_back(w); } bool isCyclic() { bool *visited = new bool[size]; bool *recStack = new bool[size]; fill(visited, visited+size, false); fill(recStack, recStack+size, false); for (int i = 0; i < size; i++) { if (isCycleUtil(i, visited, recStack)) return true; } return false; } }; void DetectCycleinaDirectedGraph_RUN() { DetectCycleinaDirectedGraph g(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); if(g.isCyclic()) cout << "Graph contains cycle\n"; else cout << "Graph doesn‘t contain cycle\n"; }
Geeks - Detect Cycle in a Directed Graph 判断图是否有环,布布扣,bubuko.com
Geeks - Detect Cycle in a Directed Graph 判断图是否有环
原文:http://blog.csdn.net/kenden23/article/details/26343033