题目:实现函数double Power(double base, int exponent),求base的exponent次方,不需要考虑溢出。
分析:这是一道看起来很简单的问题,很容易写出如下的代码:
double Power(double base, int exponent) { double result = 1.0; for(int i = 1; i <= exponent; ++i) result *= base; return result; }
上述代码存在的问题:
(1) 由于输入的exponent是个int型的数值,因此可能为正数,也可能是负数,上述代码只考虑了exponent为正数的情况。
(2) 底数为0,指数为负数,则输入非法。
改进之后代码如下:
bool g_bValid = true; bool Equal(double num1,double num2) { double gap = 0.00000001; if (num1-num2>-gap && num1-num2<gap) return true; return false; } double PowerWithUnsignedExponent(double base,unsigned int exponent) {// T(n) = O(n) double result = 1.0; for (int i=0;i<exponent;++i) result *= base; return result; } double Power(double base,int exponent) { g_bValid = true; if(Equal(base,0.0)) { if (exponent < 0) { g_bValid = false; } return 0.0; } unsigned int absExponent = (unsigned int)exponent; if (exponent<0) absExponent = (unsigned int)(-exponent); double result = PowerWithUnsignedExponent(base,absExponent); if (exponent<0) result = 1.0/ result; return result; }
其时间复杂度为O(n),如何进一步改进?
我们可以用如下公式求a的n次方,其时间复杂度为O(lgn):
n is even: a^n = a^(n/2)*a^(n/2)
n is odd: a^n = a^((n-1)/2)*a^((n-1)/2) * a
改进后代码如下:
/* n is even: a^n = a^(n/2)*a^(n/2) n is odd: a^n = a^((n-1)/2)*a^((n-1)/2) * a */ double PowerWithUnsignedExponent2(double base,unsigned int exponent) {// T(n) = O(lgn) if (exponent==0) return 1; else if (exponent==1) return base; double result = PowerWithUnsignedExponent2(base,exponent>>2); result *=result; if (exponent& 0x1) {// exponent is odd result*=base; } return result; }
参考:
http://zhedahht.blog.163.com/blog/static/254111742009101563242535/
44. log(n)求a的n次方,布布扣,bubuko.com
原文:http://www.cnblogs.com/hellogiser/p/3741850.html